THE DIOPHANTINE PROBLEM $Y^{2}-X^{3}=A$ IN A POLYNOMIAL RING

Dennis L. Johnson

Let $C[z]$ be the ring of polynomials in z with complex coefficients; we consider the equation $Y^{2}-X^{3}=A$, with $A \in \boldsymbol{C}[z]$ given, and seek solutions of this with $X, Y \in \boldsymbol{C}[z]$ i.e. we treat the equation as a "polynomial diophantine" problem. We show that when A is of degree 5 or 6 and has no multiple roots, then there are exactly 240 solutions (X, Y) to the problem with $\operatorname{deg} X \leqq 2$ and $\operatorname{deg} Y \leqq 3$.

It is possible that, A being of degree 6 , solutions (X, Y) exist with deg $X>2$ or $\operatorname{deg} Y>3$. We "normalize" the problem so as to remove these from our consideration, and give the following definitions: if A is any polynomial of degree d, we shall permit its formal degree to be any integer divisible by 6 and greater or equal to d. Given A of formal degree $6 k$, we require the solutions X, Y of the equation to be of formal degrees $2 k, 3 k$ resp., i.e. $\operatorname{deg} X \leqq 2 k$, $\operatorname{deg} Y \leqq 3 k$. This problem will be called the problem of order k. The restriction on the degrees of X, Y causes no loss in generality, for if k is chosen large enough, it will exceed $1 / 2 \mathrm{deg} X$ and $1 / 3 \mathrm{deg} Y$. Furthermore, the classification by k has a natural geometric interpretation. We confine our attention to the problem of order 1. The order restriction enables us to projectivize the equation to an equation of degree $6 k$, with $\operatorname{deg} A=6 k, \operatorname{deg} X=2 k, \operatorname{deg} Y=3 k$.

Suppose then that A has formal degree 6, and (X, Y) is a solution of proper formal degree, $\operatorname{deg} X \leqq 2$, deg $Y \leqq 3$. The projective curve $K: w^{3}-3 X w+2 Y=0$ has the z-discriminant $Y^{2}-X^{3}=A$, so the function $z: K \rightarrow S^{2}$ (proj. line) has its branches among the roots of A, for finite z. At $z=\infty$ we introduce $\widetilde{z}=1 / z, \widetilde{w}=w / z=\widetilde{z} w$ and get

$$
\widetilde{z}^{3} w^{3}-3 \widetilde{z}^{3} X\left(\frac{1}{\widetilde{z}}\right) w+2 \widetilde{z}^{3} Y\left(\frac{1}{\widetilde{z}}\right)=0:
$$

If $X=a_{0} z^{2}+\cdots, Y=b_{0} z^{3}+\cdots$, then

$$
F=\widetilde{w}^{3}-3\left(a_{0}+a_{1} \tilde{z}+a_{2} \tilde{z}^{2}\right) \widetilde{w}+2\left(b_{0}+b_{1} \tilde{z}+\cdots\right)=0
$$

and

$$
\frac{\partial F}{\partial \widetilde{w}} 3 \widetilde{w}^{2}-3\left(a_{0}+\cdots\right)
$$

Now at $\widetilde{z}=0$ (i.e. $z=\infty$) z has a branch point if and only if $\partial F / \partial \widetilde{w}=0$;

