SUPERADDITIVITY INTERVALS AND BOAS' TEST

G. D. Johnson

Abstract

A test is given for determining maximal intervals of superadditivity for convexo-concave functions. The test is then applied to several families of ogive-shaped functions.

1. Superadditive functions have been widely studied [8, 11] for their own sake but have also found important applications in reliability theory, e.g. [6]. However, tests for superadditivity were non existent in the literature until Bruckner's work [3] in 1962. A more constructive (hence more readily applicable) test due to Boas was given in 1964 in a paper by Beckenbach [2] on analytic inequalities, an area where superadditivity is of use (see [2] for a derivation of Whittaker's inequality [12]). Boas' test is here viewed in the light of Bruckner's result, strengthened, and applied to some families of convexo-concave functions as suggested in [2].
2. Consider a continuous, real-valued function, f, of a real variable, $x \in \boldsymbol{R}$. Then f is called "superadditive" on $[\beta, b] \subset \boldsymbol{R}$ if

$$
f(x)+f(y) \leqq f(x+y)
$$

for every $x, y, x+y$ in $[\beta, b]$. We normalize to the cases $\beta=0, b>$ 0 . In this event, superadditivity implies $f(0) \leqq 0$. The following sufficient condition for superadditivity is due to Boas [2]:

Theorem (Boas' Test). Assume f is nonnegative on $[0, b]$ with $f(0)=0$ and f has a continuous derivative on $[0, b]$. If there are numbers $a \leqq b / 2$ and $c \leqq a$ such that
(0) f is star-shaped ${ }^{1}$ on $[0,2 a]$,
(i) f is concave ${ }^{2}$ and satisfies $f(x / 2) \leqq f(x) / 2$ on $[c, b]$,
(ii) $f^{\prime}(0)<f^{\prime}(b)$,
(iii) $f^{\prime}(x)-f^{\prime}(b-x)$ has at most one zero in $(0, a)$. Then f is superadditive on $[0, b]$.

A proof of the theorem can be made by considering separately the cases:

[^0]
[^0]: ${ }^{1} f$ is "star-shaped" on $[0, A]$ means for every $x \in[0, A]$, and every $\alpha \in[0,1]$ it is true that $f(\alpha x) \leqq \alpha f(x)$. For $f \in C^{1}[0, A]$ it is necessary and sufficient [4] that $f^{\prime}(x) \geqq$ $f(x) / x$ for all $x \in(0, A]$.

 2 The function f is called "convex" on $[a, b]$ if for every $x, y \in[a, b]$ it is true that $f((x+y) / 2) \leqq(f(x)+f(y)) / 2 ; f$ is called "concave" if $-f$ is convex.

