SUPERADDITIVITY INTERVALS AND BOAS' TEST

G. D. Johnson

A test is given for determining maximal intervals of superadditivity for convexo-concave functions. The test is then applied to several families of ogive-shaped functions.

1. Superadditive functions have been widely studied [8, 11] for their own sake but have also found important applications in reliability theory, e.g. [6]. However, tests for superadditivity were non existent in the literature until Bruckner's work [3] in 1962. A more constructive (hence more readily applicable) test due to Boas was given in 1964 in a paper by Beckenbach [2] on analytic inequalities, an area where superadditivity is of use (see [2] for a derivation of Whittaker's inequality [12]). Boas' test is here viewed in the light of Bruckner's result, strengthened, and applied to some families of convexo-concave functions as suggested in [2].

2. Consider a continuous, real-valued function, f, of a real variable, $x \in \mathbf{R}$. Then f is called "superadditive" on $[\beta, b] \subset \mathbf{R}$ if

$$f(x) + f(y) \le f(x+y)$$

for every x, y, x + y in $[\beta, b]$. We normalize to the cases $\beta = 0, b > 0$. In this event, superadditivity implies $f(0) \leq 0$. The following sufficient condition for superadditivity is due to Boas [2]:

THEOREM (Boas' Test). Assume f is nonnegative on [0, b] with f(0) = 0 and f has a continuous derivative on [0, b]. If there are numbers $a \leq b/2$ and $c \leq a$ such that

- (0) f is star-shaped¹ on [0, 2a],
- (i) f is concave² and satisfies $f(x/2) \leq f(x)/2$ on [c, b],
- (ii) f'(0) < f'(b),

(iii) f'(x) - f'(b - x) has at most one zero in (0, a). Then f is superadditive on [0, b].

A proof of the theorem can be made by considering separately the cases:

¹ f is "star-shaped" on [0, A] means for every $x \in [0, A]$, and every $\alpha \in [0, 1]$ it is true that $f(\alpha x) \leq \alpha f(x)$. For $f \in C^1[0, A]$ it is necessary and sufficient [4] that $f'(x) \geq f(x)/x$ for all $x \in (0, A]$.

² The function f is called "convex" on [a, b] if for every x, $y \in [a, b]$ it is true that $f((x+y)/2) \leq (f(x)+f(y))/2$; f is called "concave" if -f is convex.