ON GENERALIZATIONS OF SYLOW TOWER GROUPS ## ABIABDOLLAH FATTAHI In this paper two different generalizations of Sylow tower groups are studied. In Chapter I the notion of a k-tower group is introduced and a bound on the nilpotence length (Fitting height) of an arbitrary finite solvable group is found. In the same chapter a different proof to a theorem of Baer is given; and the list of all minimal-not-Sylow tower groups is obtained. Further results are obtained on a different generalization of Sylow tower groups, called Generalized Sylow Tower Groups (GSTG) by J. Derr. It is shown that the class of all GSTG's of a fixed complexion form a saturated formation, and a structure theorem for all such groups is given. ## NOTATIONS The following notations will be used throughout this paper: | $N \triangleleft G$ | N is a normal subgroup of G | |--|--| | $N\operatorname{Char} G$ | N is a characteristic subgroup of G | | $N \cdot \triangleleft G$ | N is a minimal normal subgroup of G | | M < G | M is a proper subgroup of G | | $\mathit{M} < \cdot \mathit{G}$ | M is a maximal subgroup of G | | $Z\!(G)$ | the center of G | | $ G _p$ | p-part of the order of G , p a prime | | $\pi(G)$ | set of all prime divisors of $ G $ | | $\phi(G)$ | the Frattini subgroup of G = the intersec- | | | tion of all maximal subgroups of G | | [H]K | semi-direct product of H by K | | F(G) | the Fitting subgroup of G = the maximal | | | normal nilpotent subgroup of G | | $\mathit{C}(H) = \mathit{C}_{\mathit{G}}(H)$ | the centralizer of H in G | | $N(H) = N_{\scriptscriptstyle G}(H)$ | the normalizer of H in G | | $P \in \operatorname{Syl}_p(G)$ | P is a Sylow p -subgroup of G | | P is a S_p -subgroup of G | $P \in \operatorname{Syl}_p(G)$ | | $\mathrm{Core}(H)=\mathrm{Core}_{\scriptscriptstyle G}(H)$ | the largest normal subgroup of G contained | | | in $H = \bigcap_{g \in G} H^g$ | | l(G) | the nilpotence length (Fitting height) of G | | $l_p(G)$ | p-length of G | | d(G) | minimal number of generators of G | | c(P) | nilpotence class of the p -group P | | p^* | some nonnegative power of prime p | | $O_p(G)$ | largest normal p -subgroup of G |