ON GENERALIZATIONS OF SYLOW TOWER GROUPS

ABIABDOLLAH FATTAHI

In this paper two different generalizations of Sylow tower groups are studied. In Chapter I the notion of a k-tower group is introduced and a bound on the nilpotence length (Fitting height) of an arbitrary finite solvable group is found. In the same chapter a different proof to a theorem of Baer is given; and the list of all minimal-not-Sylow tower groups is obtained.

Further results are obtained on a different generalization of Sylow tower groups, called Generalized Sylow Tower Groups (GSTG) by J. Derr. It is shown that the class of all GSTG's of a fixed complexion form a saturated formation, and a structure theorem for all such groups is given.

NOTATIONS

The following notations will be used throughout this paper:

$N \triangleleft G$	N is a normal subgroup of G
$N\operatorname{Char} G$	N is a characteristic subgroup of G
$N \cdot \triangleleft G$	N is a minimal normal subgroup of G
M < G	M is a proper subgroup of G
$\mathit{M} < \cdot \mathit{G}$	M is a maximal subgroup of G
$Z\!(G)$	the center of G
$ G _p$	p-part of the order of G , p a prime
$\pi(G)$	set of all prime divisors of $ G $
$\phi(G)$	the Frattini subgroup of G = the intersec-
	tion of all maximal subgroups of G
[H]K	semi-direct product of H by K
F(G)	the Fitting subgroup of G = the maximal
	normal nilpotent subgroup of G
$\mathit{C}(H) = \mathit{C}_{\mathit{G}}(H)$	the centralizer of H in G
$N(H) = N_{\scriptscriptstyle G}(H)$	the normalizer of H in G
$P \in \operatorname{Syl}_p(G)$	P is a Sylow p -subgroup of G
P is a S_p -subgroup of G	$P \in \operatorname{Syl}_p(G)$
$\mathrm{Core}(H)=\mathrm{Core}_{\scriptscriptstyle G}(H)$	the largest normal subgroup of G contained
	in $H = \bigcap_{g \in G} H^g$
l(G)	the nilpotence length (Fitting height) of G
$l_p(G)$	p-length of G
d(G)	minimal number of generators of G
c(P)	nilpotence class of the p -group P
p^*	some nonnegative power of prime p
$O_p(G)$	largest normal p -subgroup of G