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WHEN ARE WITT RINGS GROUP RINGS?

ROGER WARE

It has been shown that if C is a commutative connected
semi-local ring with involution J then the Witt ring, W(C, J),
of hermitian forms over C is a factor ring of an integral group
ring Z[G], with G a group of exponent two. The purpose of
this note is to characterize those pairs (C, J) whose Witt rings
are actually isomorphic to integral group rings (Theorem 1).
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This paper is in part motivated by the result of Elman and Lam
which states that if F is a superpythagorean field [3, Th. 4.3, Def.
4.4] then the Witt ring, W(F'), of F is isomorphic to a group ring
Z[H], where H can be taken to be any subgroup of F*/F** of index
two, not containing the square class of —1 [3, Th. 5.13 (8)]. In
Theorem 1 a different proof of the Elman-Lam result is given and it
is shown that the converse is also true. In order to extend the notion
of superpythagorean to semi-local rings, we employ the concept of
signature as defined in [6].

In what follows C will always be a commutative connected (= no
idempotents other than 0 and 1) semi-local ring with involution J and
A will be the fixed ring of J. We allow the possibility that J is the
identity. The groups of units of C and A are denoted by C* and A*
respectively, and N : C*— A* is the homomorphism given by N(c)=¢J(c).
We denote by W(C, J) the Witt ring of hermitian spaces over C with
respect to the involution J, as defined in [5]. The ring theoretic
operations of W(C, J) are induced by the orthogonal direct sum and
tensor product of spaces respectively. For a in A* we let (a) denote
the class in W(C,J) of the rank one hermitian space C with form
(¢, ¢;) —cJ(c)a and [a] the image of a in the group A*/NC*. Then
{ay =<b)in W(C, J)if and only if [a] = [b] in A*/NC* and <{a)<{b) = {ab).
Hence the assignment [a] — {a) induces a ring homomorphism
At Z[A¥/NC*1—-W(C,J). By [5, Th. 1.16], the mapping + is surjec-
tive.

A signature ¢ of (C,J) is a group homomorphism ¢ : A* — {+ 1}
with the property that ¢(NC*) =1 and if o:Z[A*/NC*] — Z also
denotes the induced ring homomorphism then o (Ker) = 0. As re-
marked in [6], the signatures of (C, J) correspond bijectively with the
ring homomorphisms from W(C,J) to Z. By [5, Example 3.11] the
latter set is in bijective correspondence with the set of non-maximal
prime ideals of W(C,J). If J is the identity and C = A is a field
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