ON RELATIONS BETWEEN NORLUND AND RIESZ MEANS

IKUKO KAYASHIMA

Several results on relations between (absolute) Nörlund summability and (absolute) Riesz summability are known. Among them, Dikshit gives sufficient conditions for $|\bar{N}, q_n| \subseteq$ $|N, p_n|$ when the sequence $\{p_n\}$ is nonincreasing. The purpose of this paper is to give sufficient conditions for $|N, p_n| \subseteq |\bar{N},$ $q_n|$ or $|\bar{N}, q_n| \subseteq |N, p_n|$ when $\{p_n\}$ is monotone. The results obtained here are also absolute summability analogues of Ishiguro's theorems and Kuttner and Rhoades' theorems which state the inclusion relations between (N, p_n) and (\bar{N}, p_n) summability.

1. Let $\{p_n\}$ be a sequence such that $p_n > 0$, $P_n = \sum_{k=0}^n p_k \neq 0$. A series $\sum_{n=0}^{\infty} a_n$ with its partial sum s_n is said to be summable (N, p_n) to sum s, if $t_n = \sum_{k=0}^n p_{n-k} s_k / P_n \rightarrow s$ as $n \rightarrow \infty$, and summable (\bar{N}, p_n) to sum s, if $u_n = \sum_{k=0}^n p_k s_k / P_n \rightarrow s$ as $n \rightarrow \infty$. It is said to be absolutely summable (N, p_n) , or summable $|N, p_n|$, if $\Sigma |t_n - t_{n+1}| < \infty$, and absolutely summable (\bar{N}, p_n) , or summable $|\bar{N}, p_n|$, if $\Sigma |u_n - u_{n+1}| < \infty$. Given two summability methods A and B, we write $(A) \subseteq (B)$ if each series summable A is summable B. Throughout this paper, we write for a sequence $\{b_n\}$

$$b_{-n}=0(n\geqq1)$$
, $arDelta b_n=b_n-b_{n+1}$,

and for a double sequence $\{c_{mn}\}$

$$arDelta_n(c_{mn}) = c_{mn} - c_{m,n+1}$$
 ,

and K denotes an absolute constant, not necessarily the same at each occurrence.

On inclusion relations between two summability, the following results are known.

THEOREM A. [1] If the sequence $\{p_n\}$ is nonincreasing, $Q_n \to + \infty$ and $Q_n/q_{n+1} = O(P_{n+1})$, where $q_n > 0$ and $Q_n = \sum_{k=0}^n q_k \neq 0$, then $|\bar{N}, q_n| \subseteq |N, p_n|$.

THEOREM B. [2] If $\{p_n\}$ is the nondecreasing sequence such that $P_n \rightarrow +\infty$ and $p_n = o(P_n)$, then $(\bar{N}, p_n) \subseteq (N, p_n)$.

THEOREM C. [3] If $\{p_n\}$ is the nonincreasing sequence such that $P_n \rightarrow +\infty$, then $(N, p_n) \subseteq (\overline{N}, p_n)$.