BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

Jon C. Helton

Abstract

Since it is possible for ${ }_{a} \Pi^{b}(1+G)$ to exist and not be zero when G is unbounded and $1+G$ is not bounded away from zero, the conditions under which products of the form $\left|\Pi_{1}^{n}\left[1+G\left(x_{q-1}, x_{q}\right)\right]\right|$ are bounded or bounded away from zero for suitable subdivisions $\left\{x_{q}\right\}_{0}^{n}$ of $[a, b]$ are important in many theorems concerning product integrals. Conditions are obtained for such bounds to exist for products of the form $\Pi(1+F G)$ and $\Pi(1+F+G)$, where F and G are functions from $R \times R$ to R. Further, these results are used to obtain an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type, and functions are from the subset $\{(x, y): x<y\}$ of $R \times R$ to R, where R represents the set of real numbers. If $D=\left\{x_{q}\right\}_{0}^{n}$ is a subdivision of $[a, b]$ and G is a function, then $D(I)=\left\{\left[x_{q-1}, x_{q}\right]\right\}_{1}^{n}$ and $G_{q}=$ $G\left(x_{q-1}, x_{q}\right)$. The statements that G is bounded, $G \in O P^{\circ}, G \in O Q^{\circ}$ and $G \in O B^{\circ}$ on $[a, b]$ mean there exist a subdivision D of $[a, b]$ and a positive number B such that if $J=\left\{x_{q}\right\}_{o}^{n}$ is a refinement of D, then
(1) $|G(u)|<B$ for $u \in J(I)$,
(2) $\left|\Pi_{r}^{s}\left(1+G_{q}\right)\right|<B$ for $1 \leqq r \leqq s \leqq n$,
(3) $\left|\Pi_{r}^{s}\left(1+G_{q}\right)\right|>B$ for $1 \leqq r \leqq s \leqq n$, and
(4) $\Sigma_{J(I)}|G|<B$,
respectively. The notation $\left\{x_{q r}\right\}_{0}^{n(q)}$ represents a subdivision of an interval $\left[x_{q-1}, x_{q}\right]$ defined by a subdivision $\left\{x_{q}\right\}_{0}^{n}$. If G is a function, then $G \in S_{1}$ on $[a, b]$ only if $\lim _{x, y \rightarrow p}+G(x, y)$ and $\lim _{x, y \rightarrow p}-G(x, y)$ exist and are zero for $p \in[a, b]$, and $G \in S_{2}$ on $[a, b]$ only if $\lim _{x \rightarrow p}+G(p, x)$ and $\lim _{x \rightarrow p}-G(x, p)$ exist for $p \in[a, b]$. Further, $G \in O A^{\circ}$ on $[a, b]$ only if $\int_{a}^{b} G$ exists and $\int_{a}^{b}\left|G-\int G\right|=0$, and $G \in O M^{\circ}$ on $[a, b]$ only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$ and $\int_{a}^{b}|1+G-\Pi(1+G)|=0$. Also, $G \in O Q^{1}$ and $G \in O B^{*}$ on [$\left.a, b\right]$ if there exists a subdivision $D=$ $\left\{x_{q}\right\}_{0}^{n}$ of $[a, b]$ such that
(1) if $1 \leqq q \leqq n$ and $x_{q-1}<x<y<x_{q}$, then $G \in O Q^{\circ}$ on $[x, y]$, and
(2) if $1 \leqq q \leqq n$, then either $G \in O B^{\circ}$ on $\left[x_{q-1}, x_{q}\right]$ or $G-1 \in O B^{\circ}$ on $\left[x_{q-1}, x_{q}\right.$],
respectively. The statement that G is almost bounded above by β (or, almost bounded below by β) on $[a, b]$ means there exists a positive integer N such that if D is a subdivision of $[a, b]$ and $u \in H$ only if $u \in D(I)$ and $G(u)>\beta$ (or, $G(u)<\beta$) then H has less than N elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for

