BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

JON C. HELTON

Since it is possible for ${}_{a}\Pi^{b}(1+G)$ to exist and not be zero when G is unbounded and 1+G is not bounded away from zero, the conditions under which products of the form $|\Pi_{1}^{n}[1+G(x_{q-1},x_{q})]|$ are bounded or bounded away from zero for suitable subdivisions $\{x_{q}\}_{0}^{n}$ of [a, b] are important in many theorems concerning product integrals. Conditions are obtained for such bounds to exist for products of the form $\Pi(1+FG)$ and $\Pi(1+F+G)$, where F and G are functions from $R \times R$ to R. Further, these results are used to obtain an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type, and functions are from the subset $\{(x, y): x < y\}$ of $R \times R$ to R, where R represents the set of real numbers. If $D = \{x_q\}_0^n$ is a subdivision of [a, b] and G is a function, then $D(I) = \{[x_{q-1}, x_q]\}_1^n$ and $G_q =$ $G(x_{q-1}, x_q)$. The statements that G is bounded, $G \in OP^\circ$, $G \in OQ^\circ$ and $G \in OB^\circ$ on [a, b] mean there exist a subdivision D of [a, b] and a positive number B such that if $J = \{x_q\}_0^n$ is a refinement of D, then

 $(1) |G(u)| < B \text{ for } u \in J(I),$

 $(2) \quad |\Pi_r^s(1+G_q)| < B \text{ for } 1 \leq r \leq s \leq n,$

- (3) $|\Pi_r^s(1+G_q)| > B$ for $1 \leq r \leq s \leq n$, and
- $(4) \quad \Sigma_{J(I)} |G| < B,$

respectively. The notation $\{x_{qr}\}_{0}^{n(q)}$ represents a subdivision of an interval $[x_{q-1}, x_q]$ defined by a subdivision $\{x_q\}_{0}^{*}$. If G is a function, then $G \in S_1$ on [a, b] only if $\lim_{x,y \to p} + G(x, y)$ and $\lim_{x,y \to p} - G(x, y)$ exist and are zero for $p \in [a, b]$, and $G \in S_2$ on [a, b] only if $\lim_{x \to p} + G(p, x)$ and $\lim_{x \to p} - G(x, p)$ exist for $p \in [a, b]$. Further, $G \in OA^{\circ}$ on [a, b] only if $\int_{a}^{b} G$ exists and $\int_{a}^{b} |G - \int G| = 0$, and $G \in OM^{\circ}$ on [a, b] only if $_{x}\Pi^{y}(1 + G)$ exists for $a \leq x < y \leq b$ and $\int_{a}^{b} |1 + G - \Pi(1 + G)| = 0$. Also, $G \in OQ^{1}$ and $G \in OB^{*}$ on [a, b] if there exists a subdivision $D = \{x_{q}\}_{0}^{n}$ of [a, b] such that

(1) if $1 \leq q \leq n$ and $x_{q-1} < x < y < x_q$, then $G \in OQ^\circ$ on [x, y], and

(2) if $1 \leq q \leq n$, then either $G \in OB^{\circ}$ on $[x_{q-1}, x_q]$ or $G - 1 \in OB^{\circ}$ on $[x_{q-1}, x_q]$,

respectively. The statement that G is almost bounded above by β (or, almost bounded below by β) on [a, b] means there exists a positive integer N such that if D is a subdivision of [a, b] and $u \in H$ only if $u \in D(I)$ and $G(u) > \beta$ (or, $G(u) < \beta$) then H has less than N elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for