OPEN PROJECTIONS AND BOREL STRUCTURES FOR C*-ALGEBRAS

HERBERT HALPERN

In this paper the relationships existing among the Boolean σ -algebra generated by the open central projections of the enveloping von Neumann algebra \mathscr{B} of a C*-algebra \mathscr{A} , the Borel structure induced by a natural topology on the quasispectrum of \mathcal{A} , and the type of \mathcal{A} are discussed. The natural topology is the hull-kernel topology. It is shown that this topology is induced by the open central projections and is the quotient topology of the factor states of \mathcal{A} (with the relativized w^* -topology) under the relation of quasi-equivalence. The Borel field is shown to be Borel isomorphic with the Boolean σ -algebra multiplied by the least upper bound of all minimal central projections. Finally, it is shown that \mathcal{A} is GCR if and only if the Boolean σ -algebra (resp. algebra) contains all minimal projections in the center of \mathcal{B} , or equivalently, if and only if every point in the quasi-spectrum is a Borel set.

T. Digernes and the present author [10] showed that \mathscr{N} is CCR if and only if the open projections are strongly dense in the center of \mathscr{B} . They also showed that the complete Boolean algebra generated by the open central projections is equal to the set of all central projections in \mathscr{B} whenever \mathscr{N} is GCR. Recently, T. Digernes [9] obtained the converse of this result for separable C*-algebras.

2. The Boolean algebra of open projections. Let \mathscr{B} be a von Neumann algebra with center \mathscr{X} and let \mathscr{M} be a uniformly closed *-subalgebra of \mathscr{B} . A projections P in \mathscr{X} is said to be open relative to \mathscr{M} if there is a two-sided ideal \mathscr{I} in \mathscr{M} whose strong closure is $\mathscr{B}P$. In the sequel all ideals (unless specifically excluded) will be assumed to be closed two-sided ideals. The definition corresponds to the definition of Akemann [1, Definition II.1] for C*-algebras with identity. The set $\mathscr{P}(\mathscr{B}, \mathscr{M})$ of all open central projections of \mathscr{B} relative to \mathscr{M} contains 0,1 and the least upper bound (resp. greatest lower bound) of any (resp. any finite) subset [1, Proposition II.5, Theorem II.7].

Now let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} . The algebra \mathscr{A} will be identified with its embedded image in \mathscr{B} . In this case the set $\mathscr{P}(\mathscr{B}, \mathscr{A})$ will be denoted simply by \mathscr{P} and the projection in \mathscr{P} will be called *open* projections. The smallest Boolean algebra (resp. σ -algebra) containing \mathscr{P} will be denoted by $\langle \mathscr{P} \rangle$ (resp. $\langle \mathscr{P} \rangle$).