INTERSECTIONAL PROPERTIES OF CERTAIN FAMILIES OF COMPACT CONVEX SETS

B. E. FULLBRIGHT

Let p and q be integers with $p \ge q \ge 2$. A family \mathfrak{F} of compact convex subsets of a finite dimensional linear space is said to have the (p, q)-property if \mathfrak{F} contains at least p sets and from each p sets of \mathfrak{F} some q have a common point. In this paper a family \mathfrak{F} is defined to have the (p, q, k)-property in a n-dimensional normed linear space if \mathfrak{F} has the (p, q)-property and an additional property which is measured by k, with $0 \le k \le 1$. In some sense k measures the "squareness" of the members of \mathfrak{F} . The main result is that if k > 0, there exists a positive integer $P_n(p, q, k)$ such that each family \mathfrak{F} with the (p, q, k)-property in a n-dimensional normed linear space can be partitioned into $P_n(p, q, k)$ subfamilies each with a nonempty intersection.

Hadwiger and Debrunner have considered the following question: Is there a positive integer N(p, q, n) such that every finite family \mathfrak{F} of sets in E^n with the (p, q)-property can be partitioned into N(p, q, n) subfamilies each of which has a nonempty intersection?

1. Preliminaries. Let \mathfrak{F} be a family of nonempty subsets of a space X and r a positive integer. The family \mathfrak{F} is said to be r-pierceable if there exists a subset F of X consisting of r or fewer points such that $A \cap F \neq \emptyset$ for all $A \in \mathfrak{F}$. If \mathfrak{F} is r-pierceable for some r, then define $|\mathfrak{F}| = \min \{r: \mathfrak{F} \text{ is } r\text{-pierceable}\}$. If \mathfrak{F} is not r-pierceable for any positive integer r, then define $|\mathfrak{F}| = \infty$.

The following lemma is a generalization of a well-known theorem about the intersection of families of closed and compact subsets of Xwith the finite intersectional property. The proof is routine and is omitted.

LEMMA 1.1. Let \mathfrak{F} be a family of closed and compact subsets of X and m a positive integer. If $|\mathscr{G}| \leq m$ for each nonempty finite subfamily \mathscr{G} of \mathfrak{F} , then $|\mathfrak{F}| \leq m$.

The symbol L^n will denote the *n*-dimensional normed real linear space consisting of all *n*-tuples of real numbers whose norm is given by $||(\alpha_1, \dots, \alpha_n)|| = \max |\alpha_i|$, and the symbol B^n will denote the closed unit ball of L^n . To each ordered pair (x, A) where A is a compact subset of L^n and $x \in A$, associate real numbers I(x, A) and E(x, A)defined by $I(x, A) = \sup \{\lambda : x + \lambda B^n \subset A\}$ and $E(x, A) = \inf \{\lambda \ge 0 : x + \lambda B^n \supset A\}$.