SOME PROPERTIES OF MODULAR CONJUGATION OPERATOR OF VON NEUMANN ALGEBRAS AND A NON-COMMUTATIVE RADON-NIKODYM THEOREM WITH A CHAIN RULE

HUZIHIRO ARAKI

For a cyclic and separating vector Ψ of a von Neumann algebra R, the corresponding modular conjugation operator $J_{\overline{\Psi}}$ is characterized by the property that it is an antiunitary involution satisfying $J_{\overline{\Psi}}\Psi = \Psi$, $J_{\overline{\Psi}}RJ_{\overline{\Psi}} = R'$ and $(\Psi, Qj_{\overline{\Psi}}(Q)\Psi) \ge 0$ for all $Q \in R$ where $j_{\overline{\Psi}}(Q) = J_{\overline{\Psi}}QJ_{\overline{\Psi}}$.

The strong closure V_{Ψ} of the vectors $Qj_{\Psi}(Q)\Psi$ is shown to be a J_{Ψ} -invariant pointed closed convex cone which algebraically span the Hilbert space H. Any J_{Ψ} -invariant $\phi \in H$ has a unique decomposition $\phi = \phi_1 - \phi_2$ such that $\phi_j \in V_{\Psi}$ and $s^R(\phi_1) \perp s^R(\phi_2)$.

There exists a unique bijective homeomorphism $\sigma_{\overline{T}}$ from the set of all normal linear functionals on R onto $V_{\overline{T}}$ such that the expectation functional by the vector $\sigma_{\overline{T}}(\rho)$ is ρ . It satisfies

$$\begin{split} || \sigma_{\mathfrak{F}}(\rho_1) - \sigma_{\mathfrak{F}}(\rho_2) ||^2 &\leq || \rho_1 - \rho_2 || \\ &\leq \{ || \sigma_{\mathfrak{F}}(\rho_1) + \rho_{\mathfrak{F}}(\rho_2) || \} || \sigma_{\mathfrak{F}}(\rho_1) - \sigma_{\mathfrak{F}}(\rho_2) || . \end{split}$$

Any two $\sigma_{\overline{w}}$ and $\sigma_{\overline{w}'}$ are related by a unitary u' in R' by $u'\sigma_{\overline{w}}(\rho) = \sigma_{\overline{w}'}(\rho)$ for all ρ .

The relation $l\rho_1 \ge \rho_2$ holds if and only if there exists $A(\rho_2/\rho_1) \in R$ such that $A(\rho_2/\rho_1)\sigma_{\overline{\psi}}(\rho_1) = \sigma_{\overline{\psi}}(\rho_2)$. The smallest l is given by $||A(\rho_2/\rho_1)||$. It satisfies the chain rule $A(\rho_3/\rho_2)A(\rho_2/\rho_1) = A(\rho_3/\rho_1)$. It coincides with the positive square root of the measure theoretical Radon-Nikodym derivative if R is commutative.

As an application, it is shown that product of any two modular conjugation $j_{w}j_{\phi}$ is an inner automorphism of R.

For a product state $\otimes \rho_j$ of a C^* algebra generated by finite W^* tensor products $\{\bigotimes_{j\in I} R_j\} \otimes \{\bigotimes_{j\in I} 1_j\}$ of von Neumman algebras R_j , it is shown that $\otimes \rho_j$ and $\otimes \rho'_j$ are equivalent if and only if $\Sigma || \sigma_{\Psi}(\rho_j) - \sigma_{\Psi}(\rho'_j) ||^2 < \infty$ where $|| \sigma_{\Psi}(\rho) - \sigma_{\Psi}(\rho') ||$ is independent of Ψ .

It is shown that there exists a unitary representation $U_{\overline{r}}(g)$ of the group of all *-automorphisms of R such that $U_{\overline{r}}(g)xU_{\overline{r}}(g)^* = g(x)$ for all $x \in R$ and $U_{\overline{r}}(g)\sigma_{\overline{r}}(g^*\rho) = \sigma_{\overline{r}})\rho$ for all normal positive linear functionals ρ .

1. Introduction. In the Tomita-Takesaki theory of modular automorphisms [9], two operators $\Delta_{\overline{x}}$ and $J_{\overline{x}}$ are associated with each