SOME PROPERTIES OF MODULAR CONJUGATION OPERATOR OF VON NEUMANN ALGEBRAS AND A NON-COMMUTATIVE RADON-NIKODYM THEOREM WITH A CHAIN RULE

Huzihiro Araki

For a cyclic and separating vector Ψ of a von Neumann algebra R, the corresponding modular conjugation operator J_{Y} is characterized by the property that it is an antiunitary involution satisfying $J_{\Psi} \Psi=\Psi, J_{\Psi} R J_{\Psi}=R^{\prime}$ and $\left(\Psi, Q j_{\Psi}(Q) \Psi\right) \geqq 0$ for all $Q \in R$ where $j_{\Psi}(Q)=J_{\Psi} Q J_{\Psi}$.

The strong closure V_{Ψ} of the vectors $Q j_{\Psi}(Q) \Psi$ is shown to be a J_{Ψ}-invariant pointed closed convex cone which algebraically span the Hilbert space H. Any J_{ψ}-invariant $\Phi \in H$ has a unique decomposition $\Phi=\Phi_{1}-\Phi_{2}$ such that $\Phi_{j} \in V_{Y}$ and $s^{R}\left(\Phi_{1}\right) \perp s^{R}\left(\Phi_{2}\right)$.

There exists a unique bijective homeomorphism σ_{Y} from the set of all normal linear functionals on R onto V_{Ψ} such that the expectation functional by the vector $\sigma_{T}(\rho)$ is ρ. It satisfies

$$
\begin{aligned}
& \left\|\sigma_{\Psi}\left(\rho_{1}\right)-\sigma_{\Psi}\left(\rho_{2}\right)\right\|^{2} \leqq\left\|\rho_{1}-\rho_{2}\right\| \\
& \quad \leqq\left\{\left\|\sigma_{\Psi}\left(\rho_{1}\right)+\rho_{\Psi}\left(\rho_{2}\right)\right\|\right\}\left\|\sigma_{\Psi}\left(\rho_{1}\right)-\sigma_{\Psi}\left(\rho_{2}\right)\right\| .
\end{aligned}
$$

Any two σ_{Y} and σ_{Y}, are related by a unitary u^{\prime} in R^{\prime} by $u^{\prime} \sigma_{\Psi}(\rho)=\sigma_{\Psi}(\rho)$ for all ρ.

The relation $l \rho_{1} \geqq \rho_{2}$ holds if and only if there exists $A\left(\rho_{2} / \rho_{1}\right) \in R$ such that $A\left(\rho_{2} / \rho_{1}\right) \sigma_{T}\left(\rho_{1}\right)=\sigma_{T}\left(\rho_{2}\right)$. The smallest l is given by $\left\|A\left(\rho_{2} / \rho_{1}\right)\right\|$. It satisfies the chain rule $A\left(\rho_{3} / \rho_{2}\right) A\left(\rho_{2} / \rho_{1}\right)=$ $A\left(\rho_{3} / \rho_{1}\right)$. It coincides with the positive square root of the measure theoretical Radon-Nikodym derivative if R is commutative.

As an application, it is shown that product of any two modular conjugation $j_{\Psi} j_{\Phi}$ is an inner automorphism of R.

For a product state $\otimes \rho_{j}$ of a C^{*} algebra generated by finite W^{*} tensor products $\left\{\otimes_{j \in I} R_{j}\right\} \otimes\left\{\otimes_{j \in I} 1_{j}\right\}$ of von Neumman algebras R_{j}, it is shown that $\otimes \rho_{j}$ and $\otimes \rho_{j}^{\prime}$ are equivalent if and only if $\Sigma\left\|\sigma_{\Psi}\left(\rho_{j}\right)-\sigma_{\Psi}\left(\rho_{j}^{\prime}\right)\right\|^{2}<\infty$ where $\left\|\sigma_{\Psi}(\rho)-\sigma_{\Psi}\left(\rho^{\prime}\right)\right\|$ is independent of Ψ.

It is shown that there exists a unitary representation $U_{Y}(g)$ of the group of all $*$-automorphisms of R such that $U_{\Psi}(g) x U_{\Psi}(g)^{*}=g(x)$ for all $x \in R$ and $\left.\left.U_{\Psi}(g) \sigma_{Y}\left(g^{*} \rho\right)=\sigma_{\Psi}\right) \rho\right)$ for all normal positive linear functionals ρ.

1. Introduction. In the Tomita-Takesaki theory of modular automorphisms [9], two operators Δ_{Ψ} and J_{q} are associated with each
