A PROBLEM IN COMPACT LIE GROUPS AND FRAMED COBORDISM

HlLLEL H. GERSHENSON

Given a compact, connected, *k*-dimensional, oriented Lie **group** *G* **or a faithful orthogonal representation** *T* **of such a** *G* **there arises an element of the** *kth* **framed cobordism group** *Ω{^r .* **The study of these elements is begun, and some alge braic properties of the situation are discussed. The remain ing problem is to relate such properties of the elements in** *Ωί r* **as order or Adams** *d* **and** *e* **invariants to Lie theory.**

If *G* is a *k*-dimensional Lie group its tangent bundle may be trivialized by choosing a linear isomorphism of its Lie algebra $\mathcal{L}(G)$ with Euclidean space R^k , and using right multiplication to give an isomorphism of the tangent space at any point with the tangent space at the identity which is, of course, the Lie algebra. If G is compact and oriented every trivialization of the tangent bundle gives rise to a trivialization of the stable normal bundle (see the discussion of tangential and normal structures on p. 23 of [2]) and hence to an element of the kth framed cobordism group Ω_k^{fr} . If two choices of $\text{linear isomorphisms of } \mathcal{L}(G) \text{ with } R^k \text{ differ by an element of } GL_k(R)$ of positive determinant it is easily seen that the corresponding tan gential trivializations are homotopic through trivializations and hence determine the same element of $Ω_k^{*r*}$. Thus, a compact, oriented *k*-dimen sional Lie group G gives rise to a well-defined element $[G] \in \Omega_{\epsilon}^{f^*}.$

Now assume in addition that G is connected and let $T: G \to SO(n)$ be a faithful representation of G . T embeds G in Euclidean n^2 -space. $\text{If} \quad G \quad \text{is} \quad k\text{-dimensional} \quad \text{then} \quad k \leq n(n-1)/2 < n^2/2, \quad \text{since} \quad \dim G \leq$ $\dim SO(n)$, so that codim $G > k$ and the normal bundle of G in this embedding is already stable. We shall always assume a fixed orienta tion in any Euclidean space we discuss; in particular view Euclidean n^2 -space as $M(n)$, the space of $n \times n$ real matrices and choose an orthonormal basis e_{ij} , $1 \leq i, j \leq n$, where e_{ij} is the matrix with one in the *ijth* position and zeroes elsewhere. Orient *M(n)* by putting the e_{ij} in lexicographic order, so that the ordered basis is e_{11} , e_{12} , \cdots , $e_{1n}, e_{21}, \dots, e_{2n}, \dots, e_{n1}, \dots, e_{nn}.$ Make the convention that $M(n)$ is always oriented this way, and also assume that the matrix of any linear transformation from *M{n)* to itself is always written with respect to this ordered basis.

Returning to the faithful representation *T,* choose an orthonormal basis τ_1, \dots, τ_k for τ_i the tangent k-plane to $T(G)$ at the identity I.