ENTROPY OF SELF-HOMEOMORPHISMS OF STATISTICAL PSEUDO-METRIC SPACES

ALAN SALESKI

A pseudo-Menger space is a set X together with a function $\theta\colon X\times X\to \mathscr{D}$, the set of distribution functions, satisfying certain natural axioms similar to those of a pseudo-metric space. Let $T\colon X\to X$ be a bijection and let θ_T denote the topology generated by $\{T^*U(p,\varepsilon,\lambda)\colon i\in Z,\,p\in X,\,\varepsilon>0,\,\lambda>0\}$ where $U(p,\varepsilon,\lambda)=\{q\colon\theta(p,q)(\varepsilon)>1-\lambda\}$. Assume that θ_T is compact. Let $h(T,\theta)$ denote the topological entropy of T with respect to the θ_T topology. The purpose of this note is to show that if one is given a sequence $\{\theta_n\}$ of pseudo-Menger structures on X satisfying $\theta_n(p,q) \ge \theta(p,q)$ and $\theta_n(p,q) \to \theta(p,q)$ in distribution for all $p,q\in X$ then $h(T,\theta_n)\to h(T,\theta)$. A counterexample is then given to show that, in general, the condition $\theta_n(p,q) \ge \theta(p,q)$ cannot be removed.

- 1. The investigation of statistical metric spaces was undertaken by Karl Menger [5] in 1942. Essentially these are spaces in which the "distance" between any two points is given by a probability distribution function. Our purpose is to investigate the behavior of the topological entropy of a self-homeomorphism of a compact Menger space under perturbations of these distribution functions. We proceed to give precise definitions.
- 2. Preliminaries. Let I denote the closed unit interval, Q^+ the positive rationals, Z^+ the positive integers, and $\mathscr D$ the set of all left-continuous monotone increasing functions $F\colon R\to I$ satisfying F(0)=0 and sup F(x)=1. Let H be the function defined by: H(t)=0 for $t\leq 0$ and H(t)=1 for t>0.

Throughout our discussion, X will be a fixed set. Let \mathscr{F} denote the collection of all functions $\theta \colon X \times X \to \mathscr{D}$. For convenience we shall often write θ_{pq} in place of $\theta(p,q)$. A statistical pseudo-metric space is an ordered pair (X,θ) where $\theta \in \mathscr{F}$ satisfies

- (a) $\theta_{pq} = \theta_{qp}$ for all $p, q \in X$.
- (b) $\theta_{pq}(a+b) = 1$ whenever $\theta_{pr}(a) = \theta_{rq}(b) = 1$.
- (c) $\theta_{pp} = H$ for all $p \in X$.

If, in addition, θ satisfies

(d) $\theta_{pq} = H$ only if p = q

then (X, θ) is a statistical metric space.

Let $\mathcal S$ denote the collection of all θ for which (X, θ) is a statistical pseudo-metric space.

A triangular norm is a function $\Delta: I \times I \to I$ which is associative,