ON TWO CONGRUENCES FOR PRIMALITY

M. V. Subbarao

In this paper we consider the congruences

$$
n \sigma(n) \equiv 2(\bmod \varphi(n)), \quad \varphi(n) t(n)+2 \equiv 0(\bmod n)
$$

1. Introduction. Apart from the classical Wilson's theorem (that a positive integer $p>1$ is a prime if and only if $(p-1)!+$ $1 \equiv 0(\bmod p))$ and its variants and corollaries, there is probably no other simple primality criterion in the literature in the form of a congruence. In this connection, we may recall Lehmer's congruence [1]:

$$
\begin{equation*}
n-1 \equiv 0 \bmod \phi(n) \tag{1.1}
\end{equation*}
$$

This is satisfied by every prime. We do not yet know if it has any composite n as a solution. In 1932, Lehmer [1] showed that if there exists a composite number n satisfying (1.1), then n must be odd and square free and have at least seven distinct prime factors. This result was improved in 1944 by Fr. Schuh [4] who showed that such a n must have at least eleven prime factors. In 1970, E. Lieuwens [2] corrected an error in the proof of Schuh.

In the congruences we shall consider,

$$
\begin{equation*}
n \sigma(n) \equiv 2(\bmod \phi(n)) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(n) t(n)+2 \equiv 0(\bmod n), \tag{1.3}
\end{equation*}
$$

where $\phi(n)$ is Euler's totient, and $t(n)$ and $\sigma(n)$ are respectively the number and sum of the divisors of n. Each of these is satisfied whenever n is a prime. It is a simple matter to solve (1.2) completely (Theorem 1). However, the problem of solving (1.3) for all composite integers n seems to be a deep one, and we offer only a partial solution.
2. Theorem 1. The only composite numbers n satisfying (1.2) are $n=4,6$, and 22.

Proof. Let a solution of (1.2) be

$$
n=2^{a} p_{1}^{a_{1}} \cdots p_{r}^{a}
$$

where p_{1}, \cdots, p_{r} are the distinct odd prime divisors of n. If for some $i(1 \leqq i \leqq r), a_{i}>1$, then $p_{i} \mid \phi(n)$ and $p_{i} \mid n$, so that $p_{i} \mid 2$, an absurdity. Hence

