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PROJECTIVE PSEUDO COMPLEMENTED
SEMILATTICES

G. T. JoNES

This paper is concerned with the properties of free, and
projective pseudo complemented semilattices (PCSL).

It is proved that a projective PCSL is complemented and
all its chains and disjointed subsets are countable, and that
a Boolean algebra is projective in the category of PCSL if
and only if it is projective in the category of Boolean algebras.
Further, necessary and sufficient conditions are established for
a finite PCSL to be projective.

1. Preliminaries. A semilattice A is a partially ordered set
closed under meets. If A has a least element we will denote it by
0. We say that a* is the pseudo complement of a € A, A a semilattice
with 0, if we have (i) ¢-a* =0, (ii) If ab = 0 then b < a*, for be A.
Clearly pseudo complements are unique when they exist. A semi-
lattice with 0 called a pseudocomplemented semilattice (PCSL) if each
element has a pseudo-complement. A PCSL has a greatest element,
0*, which we denote by 1. A function f: A— B, A, B PCSL’s, is
called a homomorphism if f(ab) = f(a)- f(b), f(@*) = fla)* for a,bec A.
We observe that f(0) =0, and f(1)=1. For SS A4 let S*={x*:2e S}

It is easily shown that the following identities are true in any
PCSL.

(1) zy =yx (13) (xy)* = (@**y**)*

(2) x(yz) = (xy)z (14) «*y** =0—a*y* =a*
(3) azx=2 15) zy=0—2a < y*

(4) 0-2=0 16) x(xy)* = xy*

(5) w(wy)* = ay* A7) z@*y)* =2

(6) =0*=u (18) &*(zy)* = «*

(7) 0%* =0 (19) a*@*y)* = z*y*

(8) z < pt* (20) w**(w*y)* = p**

(9) e=sy—y*=s2o* (21) a**(wy)* = x**y*

The definitions of the concepts discussed in this paper may be found
in References 3, 4, 5, and 7.

2. Free PCSL.

LEMMA 2.1. Let X freely generate the PCSL F. Then

443



