ON CONJUGATION COBORDISM

Duane O'Neill

Abstract

An almost-complex manifold supports an involution if there is a differentiable self-map on the manifold of period two. The differential of the map acts on the coset space of the almost-complex structures on M by inner automorphism. This action is also of period two. If the almost-complex structure is sent to its conjugate, the manifold with structure, together with the given involution is called a conjugation. Any linear involution of Euclidean space may be used to stabilize this situation, giving a cobordism theory of exotic conjugations. The question considered here is: What is the image in complex cobordism of the functor which forgets equivariance. The result shown in the next section is: If a stably almost-complex manifold supports an exotic conjugation, every characteristic number is even.

The first cobordism results on conjugations are due to Conner and Floyd [3] (§24). In [4], Landweber established the equivariant analogues of the Thom theorems. Certain examples have been considered by Landweber, [5] (§3), and together with the result here the image of the forgetful functor can be seen to be maximal, in some cases.
2. Proof of the theorem. It is well-known from the work of Thom and Milnor that the unoriented bordism ring \mathscr{N}_{*}, with spectrum $M O$, is a polynomial ring over \boldsymbol{Z}_{2} on manifold classes n_{t}, $t+1$ any positive integer not a power of two (t nondyadic). Also \mathscr{U}_{*}, the complex bordism ring with spectrum $\boldsymbol{M U}$, is a polynomial ring over \boldsymbol{Z} on manifold classes $u_{t}, t=0,1, \cdots$. Representatives for the dyadic generators $u_{t}, t+1=2^{j}$, may be chosen so that every normal characteristic number is even. The principal ideal in \mathscr{U}_{*} generated by dyadic generators is the graded Milnor ideal associated to 2, I. $I_{2 k}=I \cap \mathscr{U}_{2 k}$.

If a partition of k contains a dyadic integer the partition will be called dyadic. Let $d(k)$ denote the dyadic partitions of $k, n(k)$ the nondyadic partitions of k. If $\alpha=a_{1} \alpha_{2} \cdots a_{r}$ is a partition of k then the group generator $u_{a_{1}} \cdots u_{a_{r}} \in \mathscr{U}_{2_{2 k}}$ will be denoted u_{α}. Similarly for $n_{\alpha} \in \mathscr{N}_{k}$.

If $M U(n)$ is given the involution defined in [4] then it is a G-complex, $G=\boldsymbol{Z}_{2}$, in the sense of Bredon. Note that $\tilde{\omega}_{0}(M U(n))=$ $\tilde{\omega}_{1}(M U(n))=0$. The construction given in the next section produces, for each partition of k, α, and sufficiently large n, an equivariant

