ABIAN'S ORDER RELATION AND ORTHOGONAL COMPLETIONS FOR REDUCED RINGS

W. D. Burgess and R. Raphael

Chacron has shown that, in a ring R, the relation " $a \leqq$ b iff $a b=a^{2 "}$, first studied by Abian, is an order relation iff R is reduced (has no nilpotent elements). Let R be a reduced ring with 1 , a set X in R is orthogonal if $a b=0$ for all $a \neq$ b in X and R is orthogonally complete if every orthogonal set in R has a supremum with respect to "§". A strongly regular ring is shown to be right (and left) self-injective iff it is orthogonally complete. If $R \subset S$ are reduced rings, S is an orthogonal extension of R if every element of S is the supremum of an orthogonal set in R; an orthogonal extension which is complete is an orthogonal completion. Completions are unique if they exist. An example shows that not all reduced rings have completions but if R is strongly regular, its complete ring of quotients, $Q(R)$, is its completion. Further, if R is reduced, Baer and such that $Q(R)$ is strongly regular then R has a completion which is a partial ring of quotients.

1. Orthogonal completeness and injectivity. The usual order relation in a Boolean ring extends to reduced rings R when expressed as: $a \leqq b$ iff $a b=a^{2}$ ([1] and [5]). In what follows all rings referred to will be reduced (i.e., 0 is the only nilpotent element) and with 1. The basic facts about reduced rings required below can be found in [13] and some of these are quoted here for convenience. If $X \subset R$ then the left and right annihilators of X coincide and will be denoted $\mathrm{Ann}_{R} X$ or Ann X. Also the left and right singular ideals are always trivial and, so, the left and right complete rings of quotients, $Q_{l}(R)$ and $Q_{r}(R)$, are always regular. Further, $Q_{l}(R)=Q_{r}(R)(=Q(R))$ iff $a R \cap b R=0$ implies $a b=0$ for all $a, b \in R$. In this case $Q(R)$ is strongly regular (i.e., $Q(R)$ is also reduced). We note also that all idempotents of a ring R are central and that if R is strongly regular it is duo (i.e., all one-sided ideals are two-sided).

The order relation on a ring R makes R into a partially-ordered multiplicative semigroup since $a \leqq b$ and $c \leqq d$ imply $a c \leqq b d$ ([5]). Also, if $a \leqq b$ in R then $a b=b a$ for $a \leqq b$ implies that $(a b-b a)^{2}=$ 0 . Hence all order properties are right-left symmetric.

In the sequel, if X is a subset of a ring $R, \sup _{R} X$ or $\sup X$ will always refer to the supremum with respect to " \leqq ". It is shown in [2] that there is an infinite distributive law in reduced rings. That is, if $X \subset R$ and $\sup X=a$ exists then for any $b \in R$, $\sup b X=$

