RANDOM POINTS IN A SIMPLEX

W. J. Reed

The expected values of certain functions of \boldsymbol{N} points chosen at random in an n dimensional simplex or parallelotope are considered, and a decomposition of such integrals is obtained by use of a generalised form of Crofton's Theorem.

Explicit expressions are found for the moments of the area of the triangle formed by three points chosen at random in a triangle or parallelogram.
I. Introduction. In Euclidean n-space a convex body K_{n} of volume V is given, and $n+1$ points

$$
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \ldots \ldots ., \mathbf{x}_{n+1}
$$

are chosen independently, at random in K_{n}.
Let $C\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1}\right)$ denote the volume of the convex hull of the $n+1$ points, which with probability one is an n-simplex, and let

$$
D\left(K_{n}\right)=C\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1}\right) / V
$$

Let $V_{K_{n}}^{h}$ be the h th moment of $D\left(K_{n}\right)$

$$
V_{K_{n}}^{h}=E\left(\left[D\left(K_{n}\right)\right]^{h}\right) .
$$

Since a ratio of volumes, and thus a uniform distribution over a body, is preserved under affine transformation, it follows that $V_{K_{n}}^{h}$ is an affine invariant of $K n$.

The problem of finding $V_{K_{n}}^{h}$ is almost trivial for the case $n=1$, for K_{1} is a line segment.

$$
V_{K_{1}}^{h}=\frac{2}{(h+1)(h+2)} .
$$

For the case of $n=2$, the problem of finding the first moment $V_{K_{2}}^{1}$, for various plane convex figures K_{2}, was investigated by Sylvester and others during the 1860's and has come to be known as Sylvester's Problem (see[3] for references).

For the equivalence class of triangles Δ_{2} it is known that

