AN INTEGRAL REPRESENTATION FOR STRICTLY CONTINUOUS LINEAR OPERATORS

M. W. BARTELT

Let B denote the algebra of bounded analytic functions on the open unit disc D in the complex plane. Let (B,τ) denote B endowed with the topology τ , where τ is chosen from κ,β or σ , respectively, the topology of uniform convergence on compact subsets of D, the strict topology and the topology of uniform convergence on D. This note obtains an integral representation of the form $Tf(z) = \int_{\Gamma} f(w) K(z,w) dw$ where $\Gamma = \{z : |z| = 1\}$ for the linear operators which are continuous from (B,κ) into (B,σ) . This representation is then used to study the convergence of operators in the full algebra of all continuous linear operators from (B,β) into (B,β) .

1. Introduction. Let M(D) denote the set of bounded complex valued Borel measures on D. R. C. Buck [5] showed that L is a continuous linear functional on $(C(D), \beta)$ if and only if $Lf = \int_D f d\mu$, $\forall f \in C(D)$ for some $\mu \in M(D)$. L. A. Rubel and A. L. Shields [7] showed that for any $\mu \in M(D)$ there exists a function h in $L^1(\Gamma)$ such that $\int_D f d\mu = \int_\Gamma f(x)h(x)dx$, $\forall f \in B$ and conversely, that any $h \in L^1(\Gamma)$ determines a measure $\mu \in M(D)$ for which this equality holds. Thus the continuous linear functionals on (B, β) can be represented as integration over Γ with respect to functions in $L^1(\Gamma)$.

Letting both τ_1 and τ_2 be one of the topologies κ, β or σ , let $[\tau_1 : \tau_2]$ denote the algebra of all continuous linear operators from (B, τ_1) into (B, τ_2) .

In Theorem 1 it is shown that any linear operator T in $[\beta : \beta]$ can be represented in the form

$$Tf(z) = \int_{\Gamma} f(w)K(z, w)dw, \quad \forall f \in B.$$

However, a necessary and sufficient condition on K(z, w) that such a T be in $[\beta : \beta]$ is not known.

The algebra $[\kappa : \sigma]$ is a dense subalgebra of $[\beta : \beta]$ in the compact open topology. In Theorem 3 it is shown that a linear operator T is in $[\kappa : \sigma]$ if and only if $Tf(z) = \int_{\Gamma} f(w) K(z, w) dw$ where the kernel