CLOSE-TO-STARLIKE HOLOMORPHIC FUNCTIONS OF SEVERAL VARIABLES

J. A. Pfaltzgraff and T. J. Suffridge

Abstract

Let X be a finite dimensional complex normed linear space with unit ball $B=\{x \in X:\|x\|<1\}$. In this paper the notion of a close-to-starlike holomorphic mapping from B into X is defined. The definition is a direct generalization of \mathbf{W}. Kaplan's notion of one dimensional close-to-convex functions. It is shown that close-to-starlike mappings of B into X are univalent and these mappings are given an alternate characterization in terms of subordination chains.

1. Introduction. In 1952 [2] W. Kaplan defined the class of close-to-convex functions: $f(z)=z+\cdots$ analytic and

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z) / \phi^{\prime}(z)\right\}>0 \tag{1.1}
\end{equation*}
$$

in $|z|<1$, for some univalent convex function $\phi(z)=a z+\cdots(|z|<$ 1). Subsequent interest in this class stems from Kaplan's observation that (1.1) implies $f(z)$ is univalent in $|z|<1$. In this paper we present the natural generalization of close-to-convex vector valued functions in finite dimensional complex spaces. This is a continuation of recent work on vector valued holomorphic starlike and convex mappings [7], [8]. We use the notions of subordination chains of holomorphic maps in C^{n} and the generalized Loewner differential equation [5] to elucidate the geometry of the mappings.
2. Statement of main results. Let X be a finite dimensional complex normed linear space with dual X^{*} and $\mathscr{L}(X)$ the set of continuous linear operators from X into X. We let $\mathscr{H}(B)$ denote the set of functions $f(x)$ that are holomorphic in the unit ball $B=\{x \in$ $X:\|x\|<1\}$ with values in X. The notation $f(x)=a x+\cdots, a \in C$, for $f \in \mathscr{H}(B)$ indicates that $D f(0)=a I$ where I is the identity in $\mathscr{L}(X)$.

For $0 \neq x \in X$ we define

$$
T(x)=\left\{x^{*} \in X^{*}: x^{*}(x)=\|x\| \text { and }\left\|x^{*}\right\|=1\right\},
$$

and note that $T(x)$ is nonempty by the Hahn-Banach theorem. We let \mathscr{M} denote the class of functions $h(x)=x+\cdots \in \mathscr{H}(B)$ such that $R e x^{*}(h(x))>0$ for each $x \in B-\{0\}$ and $x^{*} \in T(x)$. A mapping $g(x)=$ $x+\cdots \in \mathscr{H}(B)$ is called starlike if g is univalent in B and $\operatorname{tg}(B) \subset$ $g(B)$ for all $0 \leqq t \leqq 1$.

