TWO THEOREMS ON GROUPS OF CHARACTERISTIC 2-TYPE

Geoffrey Mason

D. Gorenstein has made the following conjecture: suppose that G is a finite simple group which is simultaneously of characteristic 2 -type and characteristic 3 -type. Then G is isomorphic to one of $\operatorname{PSp}(4,3), G_{2}(3)$ or $U_{4}(3)$. In this paper, we prove two results which, taken together, yield a proof of this conjecture under the additional assumption that G has 2-local 3-rank at least 2.

1. Introduction. In this paper we study finite simple groups, all of whose 2 -local and 3 -local subgroups are 2 -constrained and 3 -constrained respectively. The results we obtain are extensions of Thompson's theorem ES, and their relation to simple groups of characteristic 2-type is entirely analogous to the relation of theorem ES to simple N-groups.

The two Main Theorems are actually slight extensions of a conjecture of Gorenstein [10], and we refer the reader to [10] for a more detailed discussion of these ideas.

It will be convenient, before stating our main results, to develop some notation, most of which is standard.

Let X be a group, Y a subgroup of X, and π a set of primes. Then $И_{X}(Y ; \pi)$ denotes the set of Y-invariant π-subgroups of X. In particular, if the only Y-invariant π-subgroup of X is 1 , we write $И_{X}(Y ; \pi)=\{1\}$.

For a finite group $X, \pi(X)$ is the set of prime divisors of $|X|$. As in [26], the subdivision of $\pi(X)$ into $\pi_{1}, \pi_{2}, \pi_{3}$ and π_{4} will be important. We recall that $p \in \pi_{3} \cup \pi_{4}$ if a S_{p}-subgroup P of G has a normal abelian subgroup of rank at least 3, which we write as $S C N_{3}(P) \neq \varnothing$. Moreover,

$$
\begin{aligned}
& p \in \pi_{3} \text { if } S C N_{3}(P) \neq \varnothing \text { and } И_{X}\left(P ; p^{\prime}\right) \neq\{1\} \\
& p \in \pi_{4} \text { if } S_{4}(P) \neq \varnothing \text { and } И_{x}\left(P ; p^{\prime}\right)=\{1\} .
\end{aligned}
$$

If p is a prime, X a group, and P a S_{p}-subgroup of $O_{p^{\prime}, p}(X)$, we say that X is p-constrained if $C_{X}(P) \leqq O_{p^{\prime}, p}(X)$.

For p a prime and X a group, a p-local subgroup of X is the normalizer of some nonidentity p-subgroup of X.

We say that X is of characteristic p-type if $p \in \pi_{4}$ and every p-local subgroup of X is p-constrained.

With these definitions we can now state Gorenstein's conjecture:
Suppose that G is a finite simple group, p an odd prime, and

