MOMENT SEQUENCES IN *l^p*

J. BOCKETT HUNTER

Let p > 0. Conditions are derived, each necessary and sufficient, for a moment sequence to be in l^p . It is shown that the moment sequences in l^p are dense in l^p . For p = 2, these results were obtained by G. G. Johnson.

G. G. Johnson obtained a necessary and sufficient condition for a moment sequence to be in l^2 , and showed that the moment sequences in l^2 are dense in l^2 . This paper shows that the same conclusions hold in any l^p space. The proofs are similar to and improvements of those in G. G. Johnson, Pacific J. Math., **46**(1973), 201-207.

LEMMA 1. Let 0 , <math>q > 0. If $a_n = 1 - (n+1)^{-p}$, then $\{a_n^n\} \in l^q$.

Proof. $a_n^{nq} = \exp(qn\log(1-(n+1)^{-p})) < \exp(qn(-(n+1)^{-p})) = (\exp(qn(n+1)^{-p}))^{-1} < [\Sigma_{k=0}^N (qn(n+1)^{-p})^k/k!]^{-1}$, where N satisfies N(1-p) > 1. Then

$$\sum_{n=1}^{\infty} a_n^{nq} < \sum_{n=1}^{\infty} \left[(qn(n+1)^{-p})^N / N! \right]^{-1} = N! q^{-N} \sum_{n=1}^{\infty} \left[(n+1)^p / n \right]^N,$$

which converges if and only if $\sum_{n=1}^{\infty} n^{-(1-p)N}$ converges, and the latter is a convergent *p*-series.

THEOREM 1. Let $p > 0, f \in BV[0, 1], \mu_n = \int_0^1 t^n df$. For each $\{a_n\}$ such that $0 \le a_n < 1$, and $\{a_n^n\} \in l^p$, the following are equivalent.

(i) $\{\mu_n\} \in l^p$ (ii) $\{f(1) - (1 - a_n^n)^{-1} \int_{a_n}^1 f(t) dt^n \}_{n=1}^\infty \in l^p$.

Lemma 1 shows such $\{a_n^n\}$ exist.

Proof. Split the integral for μ_n at a_n and integrate by parts to obtain, as in [1], $\mu_n = a_n^n(\delta_n - \gamma_n) + (f(1) - \delta_n)$, where $\delta_n = (1 - a_n^n)^{-1} \int_{a_n}^{1} f(t) dt^n$ and $\gamma_n = (a_n^n)^{-1} \int_{0}^{a_n} f(t) dt^n$. Since $|\delta_n - \gamma_n|$ is bounded, $\{a_n^n(\delta_n - \gamma_n)\} \in l^p$, so that $\{\mu_n\} \in l^p$ if and only if $\{f(1) - \delta_n\}_{n=1}^n \in l^p$.