MAPPINGS BETWEEN ANRS THAT ARE FINE HOMOTOPY EQUIVALENCES

WILLIAM E. HAVER

It is shown in this note that every closed UV^{∞} - map between separable ANRs is a fine homotopy equivalence.

We extend Lacher's result [6,7] that a closed UV^{∞} -map between locally compact, finite dimensional ANRs is a fine homotopy equivalence to the case of arbitrary separable ANRs. It is hoped that this theorem will be useful in studying manifolds modelled on the Hilbert Cube. (See [1], section PF3. Added in proof. See also [9]).

A set $A \,\subset X$ has property UV^{∞} if for each open set U of X containing A, there is an open V, with $A \subset V \subset U$ such that V is null-homotopic in U. A mapping $f: X \to Y$ of X onto Y is a UV^{∞} -map if for each $y \in Y$, $f^{-1}(y)$ is a UV^{∞} subset of X. The mapping f is said to be closed if the image of every closed set is closed and proper if the inverse image of every compact set is compact. An absolute neighbor-hood retract for metric spaces is denoted an ANR. If α is a cover of Y and g_1 and g_2 are maps of a space A into Y, g_1 is α -near g_2 if for each $a \in A$ there is a $U \in \alpha$ containing $g_1(a)$ and $g_2(a)$. The map g_1 is α -homotopic to $g_2, g_1 \stackrel{\alpha}{\simeq} g_2$, if there is a homotopy $\lambda : A \times I \to Y$ taking g_1 to g_2 with the property that for each $a \in A$ there exists $U \in \alpha$ containing $\lambda(\{a\} \times I)$. A map $f: X \to Y$ is a fine homotopy equivalence if for each open cover, α , of Y there exists a map $g: Y \to X$ such that $fg \stackrel{\alpha}{\approx} id_Y$ and $gf \stackrel{f^{1\prime}(\alpha)}{=} id_X$.

Various versions of Lemma 3 have been proven by Smale [8], Armentrout and Price [2], Kozlowski [5] and Lacher [6]. The difference in this lemma is that K is not required to be a finite dimensional complex.

Let K be a locally finite complex and j be a nonnegative integer. When there is no confusion we will not distinghish between the complex K and its underlying point set |K|. If σ is a simplex of K, then $N(\sigma,K) = \{\tau < K \mid \sigma \cap \tau \neq \phi\}$ and $\operatorname{st}(\sigma,K) =$ $\{\tau < K \mid \sigma < \tau\}$. Also K^{j} will denote the j-skeleton of K and ${}^{j}K =$ $\{\sigma < K \mid |N(\sigma,K)| \subset |K^{j}|\}$. Let \mathscr{U} be a covering of a space Y and B a subset of Y. The star of B with respect to \mathscr{U} , $\operatorname{st}^{1}(B, \mathscr{U})$, is the set $\{U \in \mathscr{U} \mid B \cap U \neq \phi\}$. Inductively, $\operatorname{st}^{n}(B, \mathscr{U})$ is defined to be $\operatorname{st}(\operatorname{st}^{n-1}(B, \mathscr{U}))$. A covering \mathscr{V} is called a starⁿ refinement of \mathscr{U} if the covering $\{\operatorname{st}^{n}(V, \mathscr{V}) \mid V \in V\}$ refines \mathscr{U} . Every open covering of a