COUNTABLE ORDINALS AND THE ANALYTICAL HIERARCHY, I

A. S. KECHRIS

The following results are proved, using the axiom of Projective Determinacy: (i) For $n \ge 1$, every \prod_{2n+1}^{1} set of countable ordinals contains a Δ_{2n+1}^{1} ordinal, (ii) For $n \ge 1$, the set of reals Δ_{2n}^{1} in an ordinal is equal to the largest countable Σ_{2n}^{1} set and (iii) Every real is Δ_{n}^{1} inside some transitive model of set theory if and only if $n \ge 4$.

In general we shall use the terminology and notation of [3]. In particular letters i, j, k, \cdots are used as variables over $\omega = \{0, 1, 2, \cdots\}$ and $\alpha, \beta, \gamma, \cdots$ as variables over $\omega \omega$ (= the set of *reals*). For a collection of sets of reals Γ , *Determinacy* (Γ) abbreviates the statement that every set in Γ is determined and *Projective Determinacy* (PD) is the axiom that every projective set is determined.

1. An ordinal basis theorem. A well known boundedness result in recursion theory asserts that if $WO = \{\alpha : \leq_{\alpha} \text{ is a wellordering}\}$, where $\leq_{\alpha} = \{(m, n) : \alpha(2^m \cdot 3^n) = 0\}$ and $A \subseteq WO$ is Σ_1^1 , then $\sup\{|\alpha| : \alpha \in A\} < \delta_1^1$, where for $\alpha \in WO$, $|\alpha| = \text{length} (\leq_{\alpha})$ and $\delta_n^1 = \sup\{|\alpha| : \alpha \in \Delta_n^1 \& \alpha \in WO\}$. We prove below a generalization of this fact to all odd levels of the analytical hierarchy.

THEOREM 1.1. Assume Projective Determinacy, when $n \ge 1$. If $A \subseteq WO$ is \sum_{2n+1}^{l} and $\sup\{|\alpha|: \alpha \in A\} < \aleph_1$, then $\sup\{|\alpha|: \alpha \in A\} < \delta_{2n+1}^{l}$.

Proof. For notational simplicity let us take n = 1 as a typical case. Thus let $A \subseteq WO$ be $\Sigma_3^{!}$ and assume $\sup\{|\alpha|: \alpha \in A\} < \aleph_1$. Let $B \subseteq {}^{\omega}\omega$ be $\Pi_2^{!}$ and $f: {}^{\omega}\omega \rightarrow {}^{\omega}\omega$ recursive such that f[B] = A. Consider then the following game: Player I plays β , player II plays γ and II wins iff $\gamma \in WO\&(\beta \in B \rightarrow |f(\beta)| \leq |\gamma|)$. Clearly player II has a winning strategy in this game. But his payoff set is $\Sigma_2^{!}$, so by a result of Moschovakis [6] he has a winning strategy τ which is $\Delta_3^{!}$. Let $T = \{\beta * \tau: \beta \in {}^{\omega}\omega\}$, where $\beta * \tau$ is the result of II's moves following τ when I plays β . Then $T \subseteq WO$ and T is $\Sigma_1^{!}(\tau)$, so by the Boundedness Theorem

$$\sup\{|\gamma|:\gamma\in T\}<\delta_1^1(\tau)<\delta_3^1.$$