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EMBEDDINGS OF SHAPE CLASSES OF COMPACTA
IN THE TRIVIAL RANGE

J. G. HOLLINGSWORTH AND T. B. RUSHING

We show that for compacta X , Y C ^ n , n ^ 5 , satisfying the
small loops condition and having dimensions in the trivial range
with respect to n, Sh(X) = Sh(Y) if and only if Rn - X *
Rn - Y. As a corollary we obtain the following result whose
statement is void of shape: If X, Y C Rn, n ^ 5, are homeomor-
phic compacta satisfying the small loops condition and having
dimensions in the trivial range with respect to n, then Rn - X ~
R

 n - y.

1. Main results and introduction. In this paper we are
concerned with the general problem of classifying the collection Cz of
compacta in a space Z for which the following property holds: Sh(X) =
Sh (Y) is equivalent to Z - X ~ Z - y (~ means "is homeomorphic to")
for all X, Y E Cz. Our results apply to compacta in Rn whose dimen-
sions are in the trivial range with respect to n. After defining a
fundamental homotopy condition and stating our main results, we will
discuss some related work.

Let X be a compactum in a manifold M. We say that X satisfies
the small loops condition (SLC) if for any neighborhood U of X, there is
a neighborhood V of X in U and an e > 0 such that each map of S1 into
V - X of diameter less than 6 is null homotopic in U - X. We say that
k is in the trivial range with respect to (w.r.t.) n if 2 /c+2^n (or
equivalently k ^ [n/2] - 1).

THEOREM 1. Let X, Y C Rn, n § 5 , be compacta satisfying SLC
whose dimensions are in the trivial range w.r.t. n. Then, Sh(X) = Sh(Y)
if and only if Rn - X« Rn - Y.

Theorem 1 generalizes the main result of [6] which we recapture in
the following corollary. (The paper [6] improved upon [4] which was
the first trivial range work of the nature of Theorem 1.) The 1-ULC
hypothesis of Geoghegan and Summerhill is a local condition that
traditionally has been used to show that topological embeddings are flat
or unknotted, whereas the SLC, the cellularity criterion, and the global
1-alg property are three intimately related (see Proposition 1.5 of [5])
global conditions that have traditionally been used to show that topologi-
cal embeddings have nice complements (are weakly flat) or homeomor-
phic complements. We will give an example illustrating this point
following Corollary 3.
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