A RADON NIKODYM THEOREM FOR WEIGHTS ON VON NEUMANN ALGEBRAS

A. Van Deale

Abstract

Let φ and ψ be normal positive linear functionals on a von Neumann algebra M such that $\psi \leqq \varphi$. Sakai proved the existence of a unique element $h \in M$ with $0 \leqq h \leqq 1$ such that $\psi(x)=\frac{1}{2} \varphi(h x+x h)$ for any $x \in M$. A generalization of this theorem is obtained for weights on von Neumann algebras. Let φ be a faithful normal semi-finite weight and ψ any weight on M majorized by φ. Then there is a unique element $h \in M$ with $0 \leqq h \leqq 1$ such that $\psi(x)=\frac{1}{2} \varphi(h x+x h)$ holds for x in a σ-weakly dense *-subalgebra of M. A stronger version is obtained when ψ is assumed to be a normal positive linear functional. Moreover counterexamples are given to show that in general one can not expect this relation to hold for every $x \in M^{+}$.

1. Introduction. Let M be a von Neumann algebra with a faithful normal state φ. Sakai proved that for any positive linear functional ψ on M such that $\psi \leqq \varphi$ there exists a unique element $h \in M$ such that $\psi(x)=\frac{1}{2} \varphi(h x+x h)$ for all $x \in M$ [6]. In [10] we established the relationship of this Radon Nikodym theorem with the Tomita-Takesaki theory for von Neumann algebras with a separating and cyclic vector. In fact in this paper we showed that from a slight generalization of Sakai's theorem, it follows that the resolvent $(\Delta-\omega)^{-1}$ of the modular operator Δ associated with a separating and cyclic vector ξ_{0} for M, maps the set $M^{\prime} \xi_{0}$ into $M \xi_{0}$ for any $\omega \in C$ with $|\omega|=1$ and $\omega \neq 1$.

Combes has shown [2] that with every faithful normal semi-finite weight φ on a von Neumann algebra M is canonically associated a left Hilbert algebra. In this paper we use some of the techniques introduced in $[9,10]$ and the Tomita-Takesaki theory to obtain a generalization of Sakai's Radon Nikodym theorem for weights. If ψ is any weight majorized by φ we construct a Radon Nikodym derivative $h \in M$ with $0 \leqq h \leqq 1$. If \mathscr{N}_{φ} denotes the subalgebra spanned by the set $\left\{x \in M^{+}, \varphi(x)<\infty\right\}$ we prove that $x h+h x \in \mathscr{N}_{\varphi}$ for any x in a certain σ-weakly dense ${ }^{*}$-subalgebra of M and that $\psi(x)=$ $\frac{1}{2} \varphi(h x+x h)$. Moreover we give a counterexample to show that in general we can not expect that $x h+h x \in \mathscr{M}_{\varphi}$ for any $x \in \mathscr{M}_{\varphi}$ so that $\varphi(h x+x h)$ would not even be defined.

If ψ would be invariant with respect to the modular automor-

