OSCILLATION OF EVEN ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

Tsai-Sheng Liu

Abstract

The purpose of this paper is to give some oscillation criteria for even order differential equations with deviating arguments.

A continuous real-valued function $f(t)$ which is defined for all large t is called oscillatory if it has arbitrary large zero, otherwise it is called nonoscillatory.

Our work extends some results obtained by Ladas and Lakshmikantham [3] and Chiou [1] for second order equations.

1. In this section, we are concerned with the equation

$$
\begin{equation*}
y^{(n)}(t)-\sum_{j=1}^{m} p_{j}(t) y\left(g_{j}(t)\right)=0, \quad n \geqq 2 \text { an even integer } \tag{1.1}
\end{equation*}
$$

where the following assumptions are assumed to hold:
($\left.\mathrm{I}_{1}\right) \quad g_{j}(t) \leqq t$ on $[a, \infty), j=1,2, \cdots, m$ and $g_{k}(t)<t$ for some $1 \leqq k \leqq m ; g_{j}^{\prime}(t) \geqq 0$ on $[a, \infty)$ and $g_{j}(t) \rightarrow \infty$ as $t \rightarrow \infty, j=1,2$, \cdots, m.
$\left(\mathrm{I}_{2}\right) \quad p_{j}(t) \geqq 0, p_{j}^{\prime}(t) \leqq 0 \quad$ on $[a, \infty), j=1,2, \cdots, m$ and $p_{k}(t)>0$ on $[a, \infty]$ for the same k as in $\left(I_{1}\right)$.

We shall give a sufficient condition for all bounded solutions of (1.1) to be oscillatory. Our result extends Ladas and Lakshmikatham's Theorems 2.1-2.4 in [3] to arbitrary even order equation (1.1).

Lemma 1.1 (Lemma 2 in [2]). If y is a function, which together with its derivatives of order up to $(n-1)$ inclusive, is absolutely continuous and of constant sign on the interval $[a, \infty)$ and $y^{(n)}(t) y(t) \geqq 0$ on $[a, \infty)$, then either

$$
y^{(j)}(t) y(t) \geqq 0, \quad j=0,1, \cdots, n
$$

or there is an integer $l, 0 \leqq l \leqq n-2$, which is even when n is even and odd when n is odd, such that

$$
y^{(j)}(t) y(t) \geqq 0, \quad j=0,1, \cdots, l
$$

and

$$
(-1)^{n+j} y^{(j)}(t) y(t) \geqq 0, \quad j=l+1, \cdots, n
$$

for t in $[a, \infty)$.

