OSCILLATION OF EVEN ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

TSAI-SHENG LIU

The purpose of this paper is to give some oscillation criteria for even order differential equations with deviating arguments.

A continuous real-valued function f(t) which is defined for all large t is called *oscillatory* if it has arbitrary large zero, otherwise it is called *nonoscillatory*.

Our work extends some results obtained by Ladas and Lakshmikantham [3] and Chiou [1] for second order equations.

1. In this section, we are concerned with the equation

(1.1)
$$y^{(n)}(t) - \sum_{j=1}^{m} p_j(t)y(g_j(t)) = 0$$
, $n \ge 2$ an even integer,

where the following assumptions are assumed to hold:

(I₁) $g_j(t) \leq t$ on $[a, \infty)$, $j = 1, 2, \dots, m$ and $g_k(t) < t$ for some $1 \leq k \leq m$; $g'_j(t) \geq 0$ on $[a, \infty)$ and $g_j(t) \rightarrow \infty$ as $t \rightarrow \infty$, $j = 1, 2, \dots, m$.

 (I_2) $p_j(t) \ge 0$, $p_j'(t) \le 0$ on $[a, \infty)$, $j = 1, 2, \dots, m$ and $p_k(t) > 0$ on $[a, \infty]$ for the same k as in (I_1) .

We shall give a sufficient condition for all bounded solutions of (1.1) to be oscillatory. Our result extends Ladas and Lakshmikatham's Theorems 2.1-2.4 in [3] to arbitrary even order equation (1.1).

LEMMA 1.1 (Lemma 2 in [2]). If y is a function, which together with its derivatives of order up to (n-1) inclusive, is absolutely continuous and of constant sign on the interval $[a, \infty)$ and $y^{(n)}(t)y(t) \ge 0$ on $[a, \infty)$, then either

$$y^{(j)}(t)y(t) \ge 0$$
 , $j = 0, 1, \cdots, n$,

or there is an integer $l, 0 \leq l \leq n-2$, which is even when n is even and odd when n is odd, such that

$$y^{(j)}(t)y(t) \geqq 0$$
 , $j=0,\,1,\,\cdots,\,l$,

and

$$(-1)^{n+j}y^{(j)}(t)y(t) \ge 0$$
, $j = l + 1, \dots, n$

for t in $[a, \infty)$.