PERMUTATION POLYNOMIALS OVER THE RATIONAL NUMBERS

Clifton E. Corzatt

Abstract

Nonlinear polynomials, over the rational numbers, which permute the integers $0,1, \cdots N$ are investigated. The function $\nu(N)$ represents the minimum degree of all such polynomials. It is shown that

$$
\left[\frac{N+1}{4}\right] \leqq \nu(N) \leqq N-1 \text { for all } N \geqq 13 .
$$

It is also shown that $\nu(N) \leqq N-2$ for N odd and $N \geqq 7$, that $\nu(N) \leqq N-3$ for $N=2 \bmod 6$, and that if $\varepsilon>0$ then $2(N) \geqq$ $((N-1) / 2)(1-\varepsilon)$ for N sufficiently large.

1. Introduction. We wish to study polynomials with rational coefficients which permute the integers $0,1, \cdots, N$. Specifically, if we fix N, then are we able to find nonlinear polynomials of this type which have degree less than N ? If so, how small can the degree of such a polynomial be? If $N>4$ we will show that there are polynomials whose degree is less than N. For certain infinite classes of integers we can show that there are polynomials whose degree is less than $N-1$ and $N-2$. Moreover, we show that if $\varepsilon>0$ then for N sufficiently large the degree of such a polynomial is bounded below by $(N-1)(1-\varepsilon) / 2$.

This problem was suggested by Professor L. A. Rubel and arose in the following context. Polya showed that if an entire analytic function of exponential type less than $\log 2$ has integer values at each nonnegative integer, then it is a polynomial. A proof of this theorem is given on page 175 of Entire Functions by R. P. Boas. Rubel conjectures that if an entire analytic function of exponential type less than π permutes the nonnegative integers then it is the function $f(z)=z$. He gives the function $f(z)=z+\cos (\pi z)$ as an example of an entire analytic function of exponential type π which permutes the nonnegative integers.

The problem which we study here is an analogue in which we assume $f(z)$ is a polynomial and that it permutes only the integers $0,1, \cdots, N$. We show that the degree of the polynomial is fairly large with respect to N or it is of degree 1. Rubel's conjecture says that an entire analytic function which permutes the nonnegative integers is of relatively large exponential type (compared to log 2) or it is a polynomial of degree 1. As far as we know this work bears no relationship to the extensive collection of papers which

