ABELIAN AND NILPOTENT SUBGROUPS OF MAXIMAL ORDER OF GROUPS OF ODD ORDER

Zvi Arad

Denote the maximum of the orders of all nilpotent subgroups A of class at most c, of a finite group G, by $d_{c}(G)$. Let $A_{c}(G)$ be the set of all nilpotent subgroups of class at most c and having order $d_{c}(G)$ in G. Let $A_{\infty}(G)$ denote the set of all nilpotent subgroups of maximal order of a group G.

The aim of this paper is to investigate the set $A_{\infty}(G)$ of groups G of odd order and the structure of the groups G with the property $A_{2}(G) \subseteq A_{\infty}(G)$. Theorem 1 gives an expression for the number of elements in $A_{\infty}(G)$. Theorem 2 gives criteria for the nilpotency of groups of odd order.

In this paper G is a finite group, and π is a set of primes. If G is of odd order, then G is solvable [6].

1. Introduction. Denote the maximum of the orders of all nilpotent subgroups A of class at most c, of a finite group G, by $d_{c}(G)$. Let $A_{c}(G)$ be the set of all nilpotent subgroups of class at most c and having order $d_{c}(G)$ in G. Then $J_{c}(G)$ is the subgroup of G generated by $A_{c}(G)$. In particular, $J_{1}(G)=J(G)$ is the Thompson subgroup of G. Moreover, $A_{\infty}(G)$ is the set of all nilpotnet subgroups of maximal order of a group G. Here $J_{\infty}(G)$ is the subgroup of G generated by the elements of $A_{\infty}(G)$.

In this paper G is a finite group, and π is a set of primes. If G is of odd order, then G is solvable [6].

The aim of this paper is to investigate the set $A_{\infty}(G)$ for groups G of odd order and the structure of the groups G with the property $A_{2}(G) \subseteq$ $A_{x}(G)$.

We shall give, in Theorem 1, an expression for the number of elements in $A_{\infty}(G)$. In Theorem 2 we shall state criteria for the nilpotency of groups of odd order.

For groups G with the property $A_{2}(G) \subseteq A_{\infty}(G)$, we have the following:

Theorem 3. Let G be a π-solvable group with an S_{π}-subgroup K of G. Assume that $O_{\pi^{\prime}}(G)=1$ and that $A \in A_{2}(K) \cap A_{\infty}(K) \neq \varnothing$, then

