ABELIAN GROUPS IN WHICH EVERY ENDOMORPHISM IS A LEFT MULTIPLICATION

W. J. WICKLESS

Let $\langle G+ \rangle$ be an abelian group. With each multiplication on G (binary operation * such that $\langle G+* \rangle$ is a ring) and each $g \in G$ is associated the endomorphism g_i^* of left multiplication by g. Let $L(G) = \{g_i^* \mid g \in G, \ * \varepsilon \ \text{Mult } G\}$. Abelian groups G such that L(G) = E(G) are studied. Such groups G are characterized if G is torsion, reduced algebraically compact, completely decomposable, or almost completely decomposable of rank two. A partial results is obtained for mixed groups.

Let $\langle G+\rangle$ be an abelian group. With each multiplication on G (binary operation * such that $\langle G+*\rangle$ is a ring) and each $g\in G$ is associated the endomorphism g_i^* of left multiplication by g given by $g_i^*(x)=g*x, x\in G$. Let L(G) be the set of all such endomorphisms, i.e., $L(G)=\{g_i^*\mid g\in G, *\in \text{Mult}(G)\}$. In general all one can say is that L(G) is a subset of the endomorphism ring E(G). In this paper we consider abelian groups G such that every endomorphism is a left multiplication.

DEFINITION 1. An abelian group G is multiplicatively faithful iff L(G)=E(G).

We mostly follow the notations in [2]. Specifically: all groups are abelian, rings are not necessarily associative, \bigotimes denotes the tensor product over Z and $g \bigotimes_{-}$ the natural map $x \to g \bigotimes x$ from G into $G \bigotimes G$, o(x) is the order of an element x, Z(d) is the cyclic group of order d and $Z(d)^*$ is the multiplicative group of units in Z(d). For a prime p, we write Z_p for the localization of Z at p and \widehat{Z}_p for the ring (or group) of p-adic integers. We use t(A)[t(x)] for the type of a rank one torsion free group A [element x] and h(x) for the height sequence. Finally, $\langle S \rangle [\langle S \rangle_*]$ is the subgroup [pure subgroup] generated by S.

We begin by listing some simple results.

A. Let θ_g : Hom $(G \otimes G, G) \to E(G)$ be given by $\theta_g(\Delta) = \Delta \circ (g \bigotimes_{-})$, $\Delta \in \text{Hom } (G \otimes G, G), \ g \in G$. Then G is multiplicatively faithful iff $\bigcup_{g \in G} \text{Image } \theta_g = E(G)$.

Proof. Mult G, the group of all multiplications on G, is isomorphic