# ABELIAN GROUPS IN WHICH EVERY ENDOMORPHISM IS A LEFT MULTIPLICATION 

W. J. Wickless


#### Abstract

Let $\langle G+\rangle$ be an abelian group. With each multiplication on $G$ (binary operation $*$ such that $\langle G+*\rangle$ is a ring) and each $g \in G$ is associated the endomorphism $g_{i}^{*}$ of left multiplication by $g$. Let $L(G)=\left\{g_{\imath}^{*} \mid g \in G, * \varepsilon\right.$ Mult $\left.G\right\}$. Abelian groups $G$ such that $L(G)=E(G)$ are studied. Such groups $G$ are characterized if $G$ is torsion, reduced algebraically compact, completely decomposable, or almost completely decomposable of rank two. A partial results is obtained for mixed groups.


Let $\langle G+\rangle$ be an abelian group. With each multiplication on $G$ (binary operation * such that $\langle G+*\rangle$ is a ring) and each $g \in G$ is associated the endomorphism $g_{i}^{*}$ of left multiplication by $g$ given by $g_{l}^{*}(x)=g * x, x \in G$. Let $L(G)$ be the set of all such endomorphisms, i.e., $L(G)=\left\{g_{i}^{*} \mid g \in G, * \varepsilon \operatorname{Mult}(G)\right\}$. In general all one can say is that $L(G)$ is a subset of the endomorphism ring $E(G)$. In this paper we consider abelian groups $G$ such that every endomorphism is a left multiplication.

Definition 1. An abelian group $G$ is multiplicatively faithful iff $L(G)=E(G)$.

We mostly follow the notations in [2]. Specifically: all groups are abelian, rings are not necessarily associative, $\boldsymbol{\otimes}$ denotes the tensor product over $Z$ and $g \otimes$ _ the natural $\operatorname{map} x \rightarrow g \otimes x$ from $G$ into $G \otimes G, o(x)$ is the order of an element $x, Z(d)$ is the cyclic group of order $d$ and $Z(d)^{*}$ is the multiplicative group of units in $Z(d)$. For a prime $p$, we write $Z_{p}$ for the localization of $Z$ at $p$ and $\hat{Z}_{p}$ for the ring (or group) of $p$-adic integers. We use $t(A)[t(x)]$ for the type of a rank one torsion free group $A$ [element $x$ ] and $h(x)$ for the height sequence. Finally, $\langle S\rangle\left[\langle S\rangle_{*}\right.$ ]is the subgroup [pure subgroup] generated by $S$.

We begin by listing some simple results.
A. Let $\theta_{g}: \operatorname{Hom}(G \otimes G, G) \rightarrow E(G)$ be given by $\theta_{g}(\Delta)=\Delta \circ\left(g \otimes_{-}\right)$, $\Delta \in \operatorname{Hom}(G \otimes G, G), g \in G$. Then $G$ is multiplicatively faithful iff $\bigcup_{g \in G}$ Image $\theta_{g}=E(G)$.

Proof. Mult $G$, the group of all multiplications on $G$, is isomorphic

