FUNCTIONAL RELATIONSHIPS BETWEEN A SUBNORMAL OPERATOR AND ITS MINIMAL NORMAL EXTENSION

ROBERT F. OLIN

Let K be a compact subset of the plane. C(K) denotes the continuous functions on K and R(K) denotes those continuous functions of K which are uniform limits of rational functions whose poles lie off K. We say that f is minimal on K if $f \in R(K)$ and for every complex number c

$$R(L_c) = C(L_c)$$

where $L_c = \{z \in K \mid (fz) = c\}.$

Let S be a subnormal operator on a Hilbert space \mathcal{H} with its minimal normal extension N on the Hilbert space \mathcal{H} . The spectrum of S is denoted by $\sigma(S)$. In this paper it is shown that if f is minimal on $\sigma(S)$ then f(N) on \mathcal{H} is the minimal normal extension of f(N) restricted to \mathcal{H} . Some new results about subnormal operators follow as corollaries of this theorem.

An operator S acting on a Hilbert space \mathscr{H} is called subnormal if there exists a normal operator N acting on a Hilbert space \mathscr{K} , which contains \mathscr{H} , such that Nx = Sx for all x in \mathscr{H} . N is called the minimal normal extension (abbreviated mne.) of S when \mathscr{K} is the only closed subspace containing \mathscr{H} that reduces N. This is equivalent to saying that the closure of the linear manifold

$$\left\{\sum_{j=0}^n {N^*}^j x_j \,|\, x_j \in \mathscr{H},\, n ext{ a nonnegative integer}
ight\}$$

is all of \mathcal{K} . (For the elementary properties of subnormal operators consult [2, 5].)

If K is a compact set in the plane then C(K) denotes the continuous functions on K and $\mathcal{N}(K)$ is the collection of functions fanalytic on some open set $G(f) \supset K$. P(K) and R(K) are the uniform closures of the polynomials and rational functions with poles off K, respectively. Further, ∂K and int K denote the boundary and interior of K, respectively. \hat{K} designates the polynomial convex hull of K. [3, p. 66].

The set of bounded operators on a (complex) Hilbert space \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$ and $\sigma(T)$ represents the spectrum of any operator T belonging to $\mathcal{B}(\mathcal{H})$. Finally, C denotes the complex numbers and N denotes the nonnegative integers.

2. The problem. Throughout the rest of this paper it will be