FUNCTIONAL RELATIONSHIPS BETWEEN A SUBNORMAL OPERATOR AND ITS MINIMAL NORMAL EXTENSION

Robert F. Olin

Let K be a compact subset of the plane. $C(K)$ denotes the continuous functions on K and $R(K)$ denotes those continuous functions of K which are uniform limits of rational functions whose poles lie off K. We say that f is minimal on K if $f \in R(K)$ and for every complex number c

$$
R\left(L_{c}\right)=C\left(L_{c}\right)
$$

where $L_{c}=\{z \in K \mid(f z)=c\}$.
Let S be a subnormal operator on a Hilbert space \mathscr{C} with its minimal normal extension N on the Hilbert space \mathscr{K}. The spectrum of S is denoted by $\sigma(S)$. In this paper it is shown that if f is minimal on $\sigma(S)$ then $f(N)$ on \mathscr{K} is the minimal normal extension of $f(N)$ restricted to \mathscr{C}. Some new results about subnormal operators follow as corollaries of this theorem.

An operator S acting on a Hilbert space $\mathscr{\mathscr { C }}$ is called subnormal if there exists a normal operator N acting on a Hilbert space $\mathscr{\mathscr { K }}$, which contains \mathscr{C}, such that $N x=S x$ for all x in \mathscr{C}. N is called the minimal normal extension (abbreviated mne.) of S when \mathscr{N} is the only closed subspace containing \mathscr{C} that reduces N. This is equivalent to saying that the closure of the linear manifold

$$
\left\{\sum_{j=0}^{n} N^{* j} x_{j} \mid x_{j} \in \mathscr{H}, n \text { a nonnegative integer }\right\}
$$

is all of \mathscr{K}. (For the elementary properties of subnormal operators consult $[2,5]$.)

If K is a compact set in the plane then $C(K)$ denotes the continuous functions on K and $\mathscr{A}(K)$ is the collection of functions f analytic on some open set $G(f) \supset K . \quad P(K)$ and $R(K)$ are the uniform closures of the polynomials and rational functions with poles off K, respectively. Further, ∂K and int K denote the boundary and interior of K, respectively. \hat{K} designates the polynomial convex hull of K. [3, p. 66].

The set of bounded operators on a (complex) Hilbert space $\mathscr{\mathscr { C }}$ is denoted by $\mathscr{B}(\mathscr{C})$ and $\sigma(T)$ represents the spectrum of any operator T belonging to $\mathscr{B}(\mathscr{H})$. Finally, C denotes the complex numbers and N denotes the nonnegative integers.
2. The problem. Throughout the rest of this paper it will be

