SUBSTITUTION IN NASH FUNCTIONS

GUSTAVE EFROYMSON

Let D be a domain in \mathbb{R}^n . In this paper D is assumed to be defined by a finite number of strict polynomial inequalities. A Nash function on D is a real valued analytic function f(x) such that there exists a polynomial $p(z, x_1, \dots, x_n)$ in $\mathbb{R}[z, x_1, \dots, x_n]$ such that p(f(x), x) = 0 for all x in D. Let A_D be the ring of such functions on D. For any real closed field L containing \mathbb{R} , use the Tarski-Seidenberg theorem to extend f to a function from a domain D_L (defined by the same inequalities as D), $D_L \subseteq L^{(n)}$, to L. Now let $\varphi: A_D \to L$ be a homomorphism. Since $\mathbb{R}[x_1, \dots, x_n] \subset A_D$, $\varphi x = (\varphi x_1, \dots, \varphi x_n)$ is a well defined point in $L^{(n)}$ and is in D_L . So $f(\varphi x)$ is defined for any f in A_D . In this paper it is shown that $f(\varphi x) = \varphi f$. From this result one can deduce Mostowski's version of the Hilbert Nullstellensatz for A_D .

As for the Nullstellensatz, since D. Dubois [2], and J. J. Risler [8], independently proved the real Nullstellensatz for polynomial rings, there have been various successful attempts to extend the result to other types of rings, for example, [4], [9]. In [5], a partial result was obtained for Nash rings and then, in [7], T. Mostowski proved the Nullstellensatz for Nash rings. There is still a question as to whether the result holds for Nash rings on more general domains than those considered here.

1. Mostowski's theorem. We first recall some definitions.

DEFINITION 1. A set C contained in \mathbb{R}^n is said to be semialgebraic if it is defined by Boolean operations (finite union, finite intersection, complement) on sets of the form $\{a \in \mathbb{R}^n \mid p(a) > 0, \text{ for} p(x) \text{ in } \mathbb{R}[x_1, \dots, x_n]\}$. That is, C is defined by a finite number of polynomial inequalities.

DEFINITION 2. Let D be a set defined by a finite intersection of sets of the form $\{a \in \mathbb{R}^n \mid p(a) > 0\}$. Then $A_D = \{f: D \rightarrow \mathbb{R} \text{ such that} f$ is analytic on D and there exists a polynomial p(z, x) in $\mathbb{R}[z, x_1, \dots, x_n]$ such that for all x in D, $p(f(x), x) = 0\}$. This ring is called the ring of Nash functions on D.

DEFINITION 3. We wish to define certain subrings of $A_D = A$. Namely, let $B_0 = R(x_1, \dots, x_n) \cap A_D$. Let $B_1 = \bigvee B_0(\sqrt{f})$ for f in B_0 and f > 0 on D. Let $B_2 = \bigvee B_1(\sqrt{f})$ for f in B_1 and f > 0 on D.