SUBSTITUTION IN NASH FUNCTIONS

Gustave Efroymson

Let D be a domain in \boldsymbol{R}^{n}. In this paper D is assumed to be defined by a finite number of strict polynomial inequalities. A Nash function on D is a real valued analytic function $f(x)$ such that there exists a polynomial $p\left(z, x_{1}, \cdots, x_{n}\right)$ in $\boldsymbol{R}\left[z, x_{1}, \cdots, x_{n}\right]$ such that $p(f(x), x)=0$ for all x in D. Let A_{D} be the ring of such functions on D. For any real closed field L containing R, use the Tarski-Seidenberg theorem to extend f to a function from a domain D_{L} (defined by the same inequalities as D), $D_{L} \cong L^{(n)}$, to L. Now let $\varphi: A_{D} \rightarrow L$ be a homomorphism. Since $\boldsymbol{R}\left[x_{1}, \cdots, x_{n}\right] \subset A_{D}, \varphi x=\left(\varphi x_{1}, \cdots, \varphi x_{n}\right)$ is a well defined point in $L^{(n)}$ and is in D_{L}. So $f(\varphi x)$ is defined for any f in A_{D}. In this paper it is shown that $f(\varphi x)=\varphi f$. From this result one can deduce Mostowski's version of the Hilbert Nullstellensatz for A_{D}.

As for the Nullstellensatz, since D. Dubois [2], and J. J. Risler [8], independently proved the real Nullstellensatz for polynomial rings, there have been various successful attempts to extend the result to other types of rings, for example, [4], [9]. In [5], a partial result was obtained for Nash rings and then, in [7], T. Mostowski proved the Nullstellensatz for Nash rings. There is still a question as to whether the result holds for Nash rings on more general domains than those considered here.

1. Mostowski's theorem. We first recall some definitions.

Definition 1. A set C contained in R^{n} is said to be semialgebraic if it is defined by Boolean operations (finite union, finite intersection, complement) on sets of the form $\left\{a \in R^{n} \mid p(a)>0\right.$, for $p(x)$ in $\left.R\left[x_{1}, \cdots, x_{n}\right]\right\}$. That is, C is defined by a finite number of polynomial inequalities.

Definition 2. Let D be a set defined by a finite intersection of sets of the form $\left\{\alpha \in R^{n} \mid p(\alpha)>0\right\}$. Then $A_{D}=\{f: D \rightarrow R$ such that f is analytic on D and there exists a polynomial $p(z, x)$ in $R\left[z, x_{1}, \cdots, x_{n}\right]$ such that for all x in $\left.D, p(f(x), x)=0\right\}$. This ring is called the ring of Nash functions on D.

Definition 3. We wish to define certain subrings of $A_{D}=A$. Namely, let $B_{0}=R\left(x_{1}, \cdots, x_{n}\right) \cap A_{D}$. Let $B_{1}=\mathrm{V} B_{0}(\sqrt{f})$ for f in B_{0} and $f>0$ on D. Let $B_{2}=\bigvee B_{1}(\sqrt{f})$ for f in B_{1} and $f>0$ on D.

