BOUNDS FOR NUMBERS OF GENERATORS OF COHEN-MACAULAY IDEALS

JUDITH D. SALLY

Let (R, \underline{m}) be a local Cohen-Macaulay ring of dimension d and multiplicity e(R) = e. A natural question to ask about an \underline{m} -primary ideal I is whether there is any relation between the number of generators of I and the least power t of \underline{m} contained in I. (t will be called the nilpotency degree of R/I) It is quite straight forward to obtain a bound for v(I), the number of generators in a minimal basis of I, in terms of t and e. However, there are several interesting applications. The first is the existence of a bound for the number of generators of any Cohen-Macaulay ideal I, i.e. any ideal I such that R/I is Cohen-Macaulay, in terms of e(R/I), e(R) and height I. The second application is a bound in terms of d and e for the reduction exponent of \underline{m} .

1. <u>m</u>-primary ideals. In this section we will use only the standard facts about the existence and properties of superficial elements. However, later we will need a result stronger than the usual existence theorem for these elements so we take this opportunity to recall the definition and prove this special form of the existence theorem.

DEFINITION. Let (R, \underline{m}) be a local ring. An element x in \underline{m} is superficial for m if there is an integer c>0 such that

$$(\underline{m}^n:x)\cap \underline{m}^c=\underline{m}^{n-1}$$
 for all $n>c$.

It is a standard fact that x is superficial for \underline{m} if and only if there is an integer c>0 such that $0\neq \bar{X}\in \underline{m}/\underline{m}^2=G_1$ and

$$(0: \bar{x}G) \cap G_n = 0$$

for $n \geq c$ where $G_{\scriptscriptstyle n} = m^{\scriptscriptstyle n}/m^{\scriptscriptstyle n+1}$, and $G = G_{\scriptscriptstyle 0} \oplus G_{\scriptscriptstyle 1} \oplus \cdots$.

LEMMA 1.1. Let (R, \underline{m}) be a local ring with R/\underline{m} infinite. Let I, J_1, \dots, J_s be distinct ideals of R which are also distinct from \underline{m} . Then there is an element x in R such that

- $(1) \quad x \notin J_i \; , \qquad \qquad i=1, \; \cdots, \; s$
- (2) x is a superficial element for \underline{m} and
 - (3) the image of x in a superficial element for \underline{m}/I .

Proof. Let
$$G=R/\underline{m}\oplus \underline{m}/\underline{m}^2\oplus \cdots$$
 and $\bar{G}=R/\underline{m}\oplus \underline{m}/\underline{m}^2+I\oplus$