FORMULAS FOR THE NEXT PRIME

Solomon W. Golomb

In 1971, J. M. Gandhi showed that if the first n primes, $p_{1}, p_{2}, \cdots, p_{n}$ are known, then the next prime, p_{n+1}, is given "explicitly" by the formula:

$$
\begin{equation*}
1<b^{t}\left(\sum_{d \mid P_{n}} \frac{\mu(d)}{b^{d}-1}-\frac{1}{b}\right)<b, \tag{1}
\end{equation*}
$$

where b is any positive integer $\geqq 2$, where $P_{n}=p_{1} p_{2} \cdots p_{n}$, where $\mu(d)$ is the Möbius function, and where the unique integer value of t which satisfies the indicated inequalities is in fact p_{n+1}.

In this paper, we obtain of the following formulas for p_{n+1} :

$$
\begin{align*}
& p_{n+1}=\lim _{s \rightarrow \infty}\left\{P_{n}(s) \zeta(s)-1\right\}^{-1 / s} \tag{2}\\
& p_{n+1}=\lim _{s \rightarrow \infty}\left\{P_{n}(s)-\zeta^{-1}(s)\right\}^{-1 / s} \tag{3}\\
& p_{n+1}=\lim _{s \rightarrow \infty}\left\{\zeta(s)-Q_{n}(s)\right\}^{-1 / s} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
p_{n+1}=\lim _{s \rightarrow \infty}\left\{1-\zeta^{-1}(s) Q_{n}(s)\right\}^{-1 / s} \tag{5}
\end{equation*}
$$

Here $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ for (real) $s>1$ is the Riemann Zeta Function, with $\zeta^{-1}(s)=\sum_{n=1}^{\infty} \mu(n) / n^{s} ; P_{n}(s)=\prod_{p_{i} \mid P_{n}}\left(1-p_{i}^{-s}\right)$, and $Q_{n}(s)=$ $\left\{P_{n}(s)\right\}^{-1}=\sum_{n=1}^{\infty} n^{-s}$, where the prime indicates that summation is extended over those values of n having no prime factors exceeding p_{n}.

The approach to be followed here involves the derivation of a more general formula, based on the notion of probability distributions on the positive integers, from which both the Gandhi formula and the new formulas listed above follow as special cases.
2. Probability formulas for the integers. Let $\alpha(n)$ be a probability function on the positive integers. That is, $\alpha(n) \geqq 0$ for all $n=1,2,3, \cdots$, and $\sum_{n=1}^{\infty} \alpha(n)=1$.

Let $\beta(m)=\sum_{n=1}^{\infty} \alpha(m n)$. In the probability distribution D determined by $\{\alpha(n)\}, \beta(m)$ is the probability that a randomly chosen integer is a multiple of m. Next, let $\gamma(k)=\sum_{d \mid k} \mu(d) \beta(d)$. Then $\gamma(k)$ is the probability (in D) that a randomly chosen integer is relatively prime to k, because

$$
\gamma(k)=1-\sum_{p_{i} \mid k} \beta\left(p_{i}\right)+\sum_{p_{i} p_{j}!k} \beta\left(p_{i} p_{j}\right)-+\cdots
$$

Let $P_{n}=p_{1} p_{2} \cdots p_{n}$ be the product of the first n primes. Then

