ON THE INVERSE FUNCTION THEOREM

F. H. CLARKE

The classical inverse function theorem gives conditions under which a C' function admits (locally) a C' inverse. The purpose of this article is to give conditions under which a Lipschitzian (not necessarily differentiable) function admits (locally) a Lipschitzian inverse. The classical result is a special case of the theorem.

1. Introduction. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ satisfy a Lipschitz condition in a neighborhood of a point x_0 in \mathbb{R}^n . Thus for some constant K, for all x and y near x_0 , we have

(1)
$$|f(x) - f(y)| \leq K |x - y|,$$

where $|\cdot|$ denotes the usual Euclidean norm. The usual $n \times n$ Jacobian matrix of partial derivatives, when it exists, is denoted Jf(x). We topologize the vector space \mathcal{M} of $n \times n$ matrices with the norm

$$\|M\|=\max|m_{ij}|,$$

where

$$M = (m_{ij}), \qquad 1 \leq i \leq n, \qquad 1 \leq j \leq n.$$

DEFINITION 1. The generalized Jacobian of f at x_0 , denoted $\partial f(x_0)$, is the convex hull of all matrices M of the form

$$M = \lim_{i\to\infty} Jf(x_i),$$

where x_i converges to x_0 and f is differentiable at x_i for each i.

The above extends to vector-valued functions the notion of "generalized gradient" introduced by the author in [2]. It is a consequence of Rademacher's theorem that f is almost everywhere differentiable near x_0 . Furthermore, Jf(x) is bounded near x_0 as e result of (1). These observations imply

PROPOSITION 1. $\partial f(x_0)$ is a nonempty compact convex subset of \mathcal{M} .

DEFINITION 2. $\partial f(x_0)$ is said to be of maximal rank if every M in $\partial f(x_0)$ is of maximal rank.

The following theorem, which is our main result, is proven in §2: