NONSINGULAR DEFORMATIONS OF A DETERMINANTAL SCHEME

Mary Schaps

Abstract

We will be considering an affine algebraic scheme X over a field k, which is determinantal, defined by the vanishing of the $l \times l$ minors of a matrix R.

We will show that deforming the constant and linear terms of the entries in the matrix R gives an almost everywhere flat deformation of X, and that under certain simple conditions, and in particular if the dimension of X is sufficiently low, this deformation has generically nonsingular fibers.

Essentially the same results were obtained simultaneously by D. Laksov [3] using more general theorems on transversality of mappings. He quotes a result of T. Svanes indicating that the codimension result, identical in both versions, is the best obtainable (see Example 3).

This article is a generalization of an earlier result about nonsingular deformations of Cohen-Macaulay schemes of codimension 2 (Schaps [4]). Moreover, since determinantal schemes were introduced by Macaulay as a generalization of complete intersection, the theorem proven in this paper can be regarded as a generalization of Bertini's theorem, that the generic deformation of a complete intersection is nonsingular.

The precise definition of a determinantal scheme is as follows:

Definition. An affine scheme $X=\operatorname{Spec}\left(k\left[Z_{1}, \cdots, Z_{q}\right] / J\right)$ is determinantal if J is generated by all the $l \times l$ minors of an $m \times n$ matrix R of polynomials, and X is equidimensional of codimension $(m-l+1)(n-l+1)$.

On the course of the theorem, we will need to use the generic determinantal scheme, constructed as follows: Let $Y=\left(Y_{i j}\right), i=1, \cdots$, $m, j=1, \cdots n$, be a set of indeterminates, and let P_{l}^{Y} be the ideal generated in $k[Y]$ by the $l \times l$ minors of the matrix [$Y_{i j}$]. Then it is known that P_{l}^{Y} is a prime ideal of height $(m-l+1)(n-l+1)$. This number is thus the maximal codimension that can be obtained by a scheme generated by minors of this order in an $m \times n$ matrix. We will use a recent result by Hochster and Eagon [2], that every determinantal scheme is Cohen-Macaulay.

