CHARACTERIZATIONS OF SOME C*-EMBEDDED SUBSPACES OF βN

R. GRANT WOODS

Let K be a compact F-space such that $|C^*(K)| = 2^{\omega}$. Using the continuum hypothesis we characterize those subspaces of K that are C*-embedded in K. We also characterize the class of extremally disconnected Tychonoff spaces of countable cellularity. As corollaries of these theorems, using various set-theoretic hypotheses we characterize the C*embedded, and the extremally disconnected C*-embedded, subspaces of $\beta \underline{N}$.

1. Introdution. Our notation and terminology follows that of the Gillman-Jerison text [4]. All hypothesized topological spaces are assumed to be completely regular and Hausdorff (i.e., Tychonoff). As usual βX denotes the Stone-Čech compactification of the Tychonoff space X, and <u>N</u> denotes the countable discrete space. $C^*(X)$ denotes the family of bounded real-valued continuous functions on X. A subspace S of X is C^{*}-embedded in X if given $f \in C^*(S)$ there exists $g \in C^*(X)$ such that g | S = f. A cozero-set of X is a set of the form $X - f^-(0)$ where $f \in C^*(X)$. The collection of cozero-sets of X is denoted by $\operatorname{coz}(X)$. A space X is zero-dimensional if its open-andclosed (clopen) sets form a base for its open sets. X is strongly zero-dimensional if βX is zero-dimensional.

A space X is weakly Lindelöf if given an open cover \mathscr{V} of X, there is a countable subfamily \mathscr{C} of \mathscr{V} such that $\bigcup \mathscr{C}$ is dense in X (if \mathscr{C} is a collection of subsets of a set we denote $\bigcup \{C: C \in \mathscr{C}\}$ by $\bigcup \mathscr{C}$). A space X has the countable chain condition, or countable cellularity, if each family of pairwise disjoint nonempty open subsets of X is countable. We abbreviate this by writing "X has c.c.c." The following lemma, which came to the attention of the author through a letter from W.W. Comfort, is easily proved.

LEMMA 1.1. A space has c.c.c. iff each of its open subsets is weakly Lindelöf.

A space X is extremally disconnected if disjoint open subsets have disjoint closures. It is an *F*-space if its cozero-sets are C^* embedded. It is an *F'*-space if disjoint cozero-sets have disjoint closures. Each extremally disconnected space is an *F*-space, and each *F*-space is an *F'*-space. Proofs of these facts, plus other information on these classes of spaces, may be found in [1] and [4]. We shall