GENERALIZED MONOFORM AND OUASI-INJECTIVE MODULES

JOHN DAUNS

For a torsion radical F (arising from an idempotent filter of right ideals) and a unital right R-module M over a ring R, let DM be the F-divisible hull DM/M = F (EM/M), where EM is the injective hull of M.

Let $0 \neq \beta \colon N \to M$ be any nonzero homomorphism whatever from any F-dense submodule $N \subseteq M$. Then M is F-quasi-injective if each such β extends to a homomorphism of $M \to M$; M is F-monic if β is monic; M is F-co-monic if $\beta N \subset M$ is F-dense.

Each module M has a natural F-quasi-injective envelope JM inside $M \subset JM \subset DM$.

THEOREM III. Form the R-endomorphism rings $\Delta =$ End JM and $\Lambda =$ End DM, and $\Lambda^* = \{\lambda \in \Lambda \mid \lambda M = 0\} \subseteq \Lambda$, the annihilator subring of M.

When M is F-monic and F-co-monic and FM = 0, then

- (1) Λ^* is exactly the annihilator $\Lambda^* = \{\lambda \in \Lambda \mid \lambda JM = 0\}$ of the submodule $JM \subseteq DM$ and $\Lambda^* \subseteq \Lambda$ is an ideal;
 - (2) $\Delta \cong \Lambda/\Lambda^*$;
 - (3) Δ is a division ring.

For a torsion radical F and a torsion preradical G, let IM be the (F,G)-injective hull of M; and, more generally, Λ the ring of all those R-endomorphisms of IM with G-dense kernels. The above is derived as a special case where G=1 is the identity functor and IM=DM.

THEOREM II. (i) M is (F, G)-quasi-injective $\Leftrightarrow \Lambda M \subseteq M$. (ii) The (F, G)-quasi-injective hull JM of M exists and $JM = M + \Lambda M$.

(iii) JM is the unique smallest (F, G)-quasi-injective module with $M \subset JM \subset IM$.

Simple modules over a ring were at first generalized to quasi-simple modules ([9]), and then these to strongly uniform or monoform ones ([15] and [6]).

Here the monoform modules are further generalized to the F-monic ones. The quasi-injective hull plays an important role in the theory of quasi-simple modules ([8], [9], [15], and [6]). Furthermore, there is a