PARTIAL REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

VLADIMIR SCHEFFER

At the first instant of time when a viscous incompressible fluid flow with finite kinetic energy in three space becomes singular, the singularities in space are concentrated on a closed set whose one dimensional Hausdorff measure is finite.

§1. Introduction. Let $v: R^3 \times R^+ \to R^3$ (where $R^+ = \{t \in R : t > 0\}$ represents time) be a weak solution to the Navier-Stokes equations of incompressible viscous fluid flow in 3 dimensional euclidean space with finite initial kinetic energy and viscosity equal to 1. Our definition of weak solution coincides with Leray's definition of "solution turbulente" [4, pp. 240, 241, 235]. In that paper, Leray showed that weak solutions always exist for prescribed initial conditions with finite energy. He also proved the following regularity theorem:

LERAY'S THEOREM. There exists a finite or countable sequence J_0 , J_1 , J_2 , \cdots such that $J_q \subset \mathbb{R}^+$, $J_0 = \{t: t > a\}$ for some a, J_q is an open interval for q > 0, the J_q are disjointed, the Lebesgue measure of $\mathbb{R}^+ - \bigcup_{q \ge 0} J_q$ is zero, v can be modified on a set of Lebesgue measure zero so that its restriction to each $\mathbb{R}^3 \times J_q$ becomes smooth, and

$$\sum_{q>0} (\operatorname{length} (J_q))^{1/2}$$

is finite.

It is not known whether there exist v with singularities $(J_0 = R^+$ is a possibility). The purpose of this paper is to prove the following theorem on the nature of possible singularities of v. We assume that v has been modified to be smooth on each $R^3 \times J_{q}$.

THEOREM 1. Let t_0 be the right endpoint of an interval J_q with q > 0. Then there exists a closed set $S \subset \mathbb{R}^3$ such that v can be extended to a continuous function on

$$(R^{3} \times J_{q}) \cup ((R^{3} - S) \times \{t_{0}\})$$

and the 1 dimensional Hausdorff measure of S is finite.