LEVEL SETS OF POLYNOMIALS
 IN n REAL VARIABLES
 Morris Marden and Peter A. McCoy

The methods used in studying the zeros of a polynomial in a single complex variable are here adapted to investigating the level surfaces of a real polynomial in E^{n}, with respect to their intersection and finite or asymptotic tangency with certain cones. Special attention is given to the equipotential surfaces generated by an axisymmetric harmonic polynomial in E^{3}.

A principal interest is the application of reasoning used by Cauchy [2, p. 123] in obtaining bounds on the zeros of polynomials in one complex variable. We thereby seek the level sets

$$
L_{\alpha}(H)=\left\{X \in E^{n} \mid H(X)=\alpha\right\}
$$

generated from the real polynomials

$$
\begin{align*}
& H(X)-\alpha=\sum_{0 \leq 1,+++_{n} \leq n} \alpha_{n}{ }_{1 m} x_{1}^{\prime} x_{2}^{l_{2}} \cdots x_{n}^{\prime n}, \tag{1}\\
& X=\left(x_{1}, x_{2}, \cdots, x_{n}\right), r=|X|=\left[x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right]^{1 / 2} .
\end{align*}
$$

It is convenient to introduce direction numbers $\lambda_{J}=x_{J} r^{-1}, 1 \leqq j \leqq n$, connected by $\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}=1$ and cones $\Lambda_{1}: \lambda_{l}=$ constant, about the j th axis. On the intersection of the cones Λ_{l}, these polynomials become

$$
H\left(r \Lambda_{,}\right)-\alpha=\sum_{k=0}^{n} r^{k} A_{k}\left(\Lambda_{,}\right)
$$

where

$$
A_{k}=A_{k}\left(\Lambda_{j}\right)=\sum_{\mu_{1}+\cdots, j_{n}=k} \alpha_{1} \cdot{ }_{m} \lambda_{1}^{\prime} \cdots \lambda_{n}^{\prime n}, \quad 0 \leqq k \leqq n .
$$

At the origin the level set $L_{\alpha}(H)$ has ν th order contact with Λ_{s}, if $A_{k}\left(\Lambda_{,}\right)=0$ for $0 \leqq k \leqq \nu-1$ but $A_{\nu}\left(\Lambda_{\jmath}\right) \neq 0$ and $A_{n}\left(\Lambda_{\jmath}\right) \neq 0$. For such sets we introduce the ratios

$$
M_{v}=M_{v}\left(\Lambda_{j}\right)=\max _{v \leq k \leq n-1}\left|A_{k}\right| A_{n} \mid
$$

