AUTOMORPHISM GROUPS OF UNIPOTENT GROUPS OF CHEVALLEY TYPE

A. Fauntleroy

Let G be a quasi-simple algebraic group defined and split over the field k. Let V be a maximal k-split unipotent subgroup of G and $\operatorname{Aut}(V)$ the group of k-automorphism of V. The structure of Aut (V) is determined and the obstructions to making $\operatorname{Aut}(V)$ algebraic when char $k>3$ are made explicit. If G is not of type A_{2}, then $\operatorname{Aut}(V)$ is solvable.

Introduction. In [5] Hochschild and Mostow showed that the automorphism group of a unipotent algebraic group defined over a field k of characteristic zero carries the structure of an algebraic k-group. For example if V is a vector group over \mathbf{C}, then $\operatorname{Aut}_{\mathbf{c}}(V)=\mathrm{GL}(n, \mathbf{C})$. For more complicated unipotent groups - even over \mathbf{C} - little seems to be known about the actual structure of the automorphism group. On the other hand, it was shown by Sullivan in [8] and again by this author in [3] that the Hochschild-Mostow result never holds in positive characteristics when the dimension of the given unipotent group is greater than one.

In [4] Gibbs determined generators for the (abstract) automorphism group of $V(k)$ - the k-rational points of a maximal k-split unipotent subgroup V of any k-split simple algebraic group. The characteristic of the field k was assumed distinct from 2 or 3 , but no other assumptions on the field k were made. We refer to such groups V as unipotent groups of Chevalley type. The purpose of this paper is two-fold:

1. To determine the automorphism groups in characteristic zero of unipotent groups of Chevalley type; and
2. To exhibit the obstructions to making these groups algebraic in positive characteristics.

Let $A u t_{V}(k)$ denote the group of k-automorphisms of the unipotent k-group of Chevalley type V. We show (2.9) that there is an exact sequence

$$
1 \rightarrow N(k) \rightarrow A u t_{V}(k) \rightarrow H(k) \rightarrow 1
$$

such that
(i) $\quad H(k)$ is the group of k-rational points of an algebraic k-group H.
(ii) $\quad N(k)=0$ if char $k=0$, and $N(k)=\amalg_{n=1}^{\infty} G_{a}(k)$ if char $k>3$.
(iii) The above sequence splits and $A u t_{v}(k)$ is the semi-direct product of $N(k)$ and $H(k)$.

