A FORMULA FOR THE NORMAL PART OF THE LAPLACE-BELTRAMI OPERATOR ON THE FOLIATED MANIFOLD

Haruo Kitahara and Shinsuke Yorozu

Abstract

In this paper, we give a formula for the normal part of the Laplace-Beltrami operator with respect to the second connection on a foliated manifold with a bundle-like metric. This formula is analogous to the formula obtained by S. Helgason.

1. Itroduction. We shall be in C^{∞}-category and manifolds are supposed to be paracompact, connected Hausdorff spaces.

Let M be a complete ($p+q$)-dimensional Riemannian manifold and H a compact subgroup of the Lie group of all isometries of M. We suppose that all orbits of H have the same dimension p. Then H defines a p-dimensional foliation F whose leaves are orbits of H, and the Riemannian metric is a bundle-like metric with respect to the foliation F. A quotient space $B=M / F$ is a Riemannian V-manifold [5]. Let L_{D} be the Laplace-Beltrami operator on M with respect to the second connection $D[8]$, and let $\Delta\left(L_{D}\right)$ denote the operator defined by (*) in §4. Our goal in this paper is the following theorem:

Theorem. Let L_{D} be the Laplace-Beltrami operator on M with respect to the second connection D and L_{B} the Laplace-Beltrami operator on B with respect to the Levi-Civita connection associated with the Riemannian metric defined by the normal component of the metric on M. Then

$$
\Delta\left(L_{D}\right)=\delta^{-1 / 2} L_{B} \circ \delta^{1 / 2}-\delta^{-1 / 2} L_{B}\left(\delta^{1 / 2}\right)
$$

where δ is the function given by (**) below.
This theorem is analogous to the following result obtained by S. Helgason [2]: Suppose V is a Riemannian manifold, H a closed unimodular subgroup of the Lie group of all isometries of V (with the compact open topology). Let $W \subset V$ be a submanifold satisfying the condition: For each $w \in W$,

$$
(H \cdot w) \cap W=\{w\}, \quad V_{w}=(H \cdot w)_{w} \oplus W_{w}
$$

where \oplus denotes orthogonal direct sum. Let L_{V} and L_{W} denote the Laplace-Beltrami operators on V and W, respectively. Then

$$
\Delta\left(L_{V}\right)=\delta^{-1 / 2} L_{W} \circ \delta^{1 / 2}-\delta^{-1 / 2} L_{W}\left(\delta^{1 / 2}\right)
$$

