LOCALLY BOUNDED TOPOLOGIES ON F(X)

JO-ANN COHEN

It is classic that, to within equivalence, the only valuations on the field F(X) of rational functions over a field F that are improper on F are the valuations v_p , where p is a prime of the principal ideal subdomain F[X] of F(X), and the valuation v_{∞} , defined by the prime X^{-1} of the principal ideal subdomain $F[X^{-1}]$ of F(X) ([1], p. 94, Corollary 2). If \mathcal{T} is the supremum of finitely many of the associated valuation topologies, then \mathcal{T} is a Hausdorff, locally bounded ring topology on F(X) for which Fis a bounded set and for which there is a nonzero topological nilpotent a. In this paper we shall show conversely that any topology on F(X) having these properties is the supremum of finitely many valuation topologies.

A subset S of a topological ring R is bounded if given any neighborhood V of 0, there exists a neighborhood U of 0 such that $SU \subseteq V$ and $US \subseteq V$. The topology on R is locally bounded if there is a bounded neighborhood of 0. A bounded subfield of a Hausdorff topological ring is discrete ([2], p. 119, Exercise 13). It is easy to see that if $\lim_{n\to\infty} x_n = 0$ and if $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence, then $\lim_{n\to\infty} a_n x_n = 0$.

An element c of a topological ring is a topological nilpotent if $\lim_{n\to\infty} c^n = 0$. Let $\mathscr{P} = \{p \in F[X]: p \text{ is a prime polynomial}\}$, and let $\mathscr{P}' = \mathscr{P} \cup \{\infty\}$. For each $p \in \mathscr{P}'$, we shall denote by \mathscr{T}_p the topology defined by the valuation v_p . Then for any finite subset L of \mathscr{P}' , $\sup_{p \in L} \mathscr{T}_p$ has a nonzero topological nilpotent. Indeed, let g be the product of the members of $L \cap \mathscr{P}$. If $\infty \notin L$, g is a nonzero topological nilpotent for $\sup_{p \in L} \mathscr{T}_p$; if $\infty \in L$, let q be a prime polynomial not in L and let r > 0 be such that deg $(q') > \deg g$; then $g q^{-r}$ is a nonzero topological nilpotent of $\sup_{p \in L} \mathscr{T}_p$.

We recall that a norm $\|\cdot\cdot\|$ on a field K is a function to the nonnegative reals satisfying $\|x\| = 0$ if and only if x = 0, $\|x - y\| \le \|x\| + \|y\|$, and $\|xy\| \le \|x\| \|y\|$ for all $x, y \in K$. Clearly a subset of K is bounded in norm if and only if it is bounded for the topology defined by the norm; in particular the topology given by a norm is a locally bounded topology. We shall use the following theorem of P. M. Cohn ([4], Theorem 6.1): A Hausdorff, locally bounded ring topology on a field K for which there is a nonzero topological nilpotent is defined by a norm.

THEOREM 1. Let F be a field and x a transcendental element over F in some field extension. Let \mathcal{T} be a Hausdorff, locally bounded ring