A CLASS OF MAXIMAL TOPOLOGIES

DOUGLAS E. CAMERON

In this note, we characterize maximal topologies of a class of topological properties which include lightly compact spaces and QHC-spaces and, when restricted to completely regular spaces, pseudocompact spaces. In addition we prove some results relating maximal lightly compact and maximal pseudocompact spaces.

A. B. Raha [12] has shown that maximal lightly compact spaces are submaximal as are maximal pseudocompact spaces, and Douglas E. Cameron [6] has characterized maximal QHC-spaces and shown these to be submaximal. In Tychonoff spaces, lightly compact and pseudocompact are equivalent; and in Hausdorff spaces, QHC and H-closed are equivalent. We shall show that the maximal topologies of a class of topologies which include lightly compact and QHC are submaximal and T_1 spaces.

The topological space with topology τ on set X shall be denoted by (X, τ) , the closure of a subset A of X with respect to τ is $cl_{\tau}A$ and the interior of A with respect to τ is int $_{\tau}A$, the complement of A with respect to X is X - A, the relative topology of τ on A is $\tau | A$, and the product of spaces $(X_{\alpha}, \tau_{\alpha})$ for $\alpha \in \mathfrak{A}$ is $(\pi_{\mathfrak{A}} X_{\alpha}, \pi_{\mathfrak{A}} \tau_{\alpha})$.

A topological space (X, τ) with property R is maximal R if whenever τ' is stronger than $\tau(\tau' \supset \tau)$, then (X, τ') does not have property R. In [5] it was shown that for a topological property R, (X, τ) is maximal R if and only if every continuous bijection from a space (Y, τ) with property R to (X, τ) is a homeomorphism. A topological space (X, τ) for which there exists a stronger maximal R topology is said to be strongly R. For $A \subseteq X$ the topology $\tau(A)$ with subbase $\tau \cup \{A\}$ is the simple expansion of τ by A.

We shall restrict our study to topological properties which satisfy some or all of the following:

P-1: contractive (preserved by continuous surjections)

P-2: regular closed hereditary

P-3: semi-regular (A topological property R is semi-regular if (X, τ) has property R if and only if (X, τ_s) has property R where τ_s is the semi-regularization of τ .)

P-4: contagious (A topological property R is contagious if