THE LENGTH OF THE PERIOD OF THE SIMPLE CONTINUED FRACTION OF $d^{1/2}$.

J. H. E. Cohn

Let p(d) denote the length of the period of the simple continued fraction for $d^{1/2}$ and ε the fundamental unit in the ring $Z[d^{1/2}]$. We prove that as $d \to \infty$,

THEOREM 1. $p(d) \leq 7/2\pi^{-2}d^{1/2}\log d + O(d^{1/2})$.

THEOREM 2. $\log \varepsilon \leq 3\pi^{-2} d^{1/2} \log d + O(d^{1/2})$.

THEOREM 3. $p(d) \neq o(d^{1/2}/\log \log d)$.

THEOREM 4. If $\log \varepsilon \neq o(d^{1/2} \log d)$ then also

 $p(d) \neq o(d^{1/2} \log d)$.

Recently Hickerson [1] has proved that $p(d) = O(d^{1/2+\delta})$ for every $\delta > 0$, and in fact a result somewhat more precise than this. Lehmer [2] has suggested that for arbitrarily large d, p(d) might be as large as $0.30d^{1/2} \log d$, and if this is indeed the case then Theorem 1 is almost the best possible result. In fact it is easy to show that $p(d) = O(d^{1/2} \log d)$ using known results regarding $\log \varepsilon$, but the constant in Theorem 1 improves the best obtainable in this way.

Let ε_0 denote the fundamental unit in the field $Q(d^{1/2})$, $[a_0, \overline{a_1, a_2}, \overline{\cdots a_{p(d)-1}, 2a_0}]$ the continued fraction for $d^{1/2}$ and P_r/Q_r its rth convergent. Then as is well known $\varepsilon = \varepsilon_0$ or ε_0^3 . Thus by the result of Stephens [3],

$$\logarepsilon \leq 3\logarepsilon_{_0} \leq rac{3}{2}(1-e^{_{-1/2}}+\delta)d^{_{1/2}}\log d \;.$$

Now $Q_0 = 1$, $Q_1 = a_1 \ge 1$ and $Q_{r+2} = a_{r+2}Q_{r+1} + Q_r \ge Q_{r+1} + Q_r$ and so by induction $Q_r \ge u_{r+1}$, the Fibonacci number, for $r \ge 0$. Now

$$egin{aligned} arepsilon &= P_{p(d)-1} + Q_{p(d)-1} d^{1/2} \ &> 2 d^{1/2} Q_{p(d)-1} - 1 \ &\geq 2 d^{1/2} u_{p(d)} - 1 \ &> \left\{ rac{1 + \sqrt{5}}{2}
ight\}^{p(d)} extbf{,} \end{aligned}$$

and so $p(d) < Ad^{1/2} \log d$ where A is approximately 5/4.

In exactly the same way, using $a_r < d^{1/2}$ for $0 \leq r < p(d)$ it is possible to show that $p(d) \gg \log \varepsilon / \log d$. Since $d = 2^{2k+1}$ gives $\varepsilon = (1 + \sqrt{2})^{2^k}$, we find that for arbitrarily large d it is possible for $p(d) \gg d^{1/2} / \log d$, and it will be shown that this can be improved at