THE LENGTH OF THE PERIOD OF THE SIMPLE CONTINUED FRACTION OF $d^{1/2}$.

J. H. E. COHN

Let *p(d)* **denote the length of the period of the simple** continued fraction for $d^{1/2}$ and ε the fundamental unit in the ring Z [$d^{1/2}$]. We prove that as $d \rightarrow \infty$,

 ${\bf Theorem\ 1.} \quad p(d) \leqq 7/2\pi^{-2}d^{1/2}\log d \, + \, O(d^{1/2}).$

THEOREM 2. $\log \epsilon \leq 3\pi^{-2}d^{1/2}\log d + O(d^{1/2})$.

THEOREM 3. $p(d) \neq o(d^{1/2}/\log \log d)$.

THEOREM 4. If $\log \epsilon \neq o(d^{1/2} \log d)$ then also

 $p(d) \neq o(d^{1/2} \log d)$.

Recently Hickerson [1] has proved that $p(d) = O(d^{1/2+\delta})$ for every $\delta > 0$, and in fact a result somewhat more precise than this. Lehmer [2] has suggested that for arbitrarily large *d, p(d)* might be as large as $0.30d^{1/2}\log d$, and if this is indeed the case then Theorem 1 is almost the best possible result. In fact it is easy to show that $p(d) = O(d^{1/2} \log d)$ using known results regarding log ε , but the constant in Theorem 1 improves the best obtainable in this way.

Let ε_0 denote the fundamental unit in the field $Q(d^{1/2})$, $[a_0, a_1, a_2,$ $\cdots a_{p(d)-1}$, $2a_0$ the continued fraction for $d^{1/2}$ and P_r/Q_r its rth convergent. Then as is well known $\varepsilon = \varepsilon_0$ or ε_0^3 . Thus by the result of Stephens [3],

$$
\log \varepsilon \leqq 3\log \varepsilon_{\scriptscriptstyle 0} \leqq \frac{3}{2}(1-e^{-\scriptscriptstyle 1/2}+\delta)d^{\scriptscriptstyle 1/2}\log d\,\,.
$$

Now $Q_0 = 1$, $Q_1 = a_1 \ge 1$ and $Q_{r+2} = a_{r+2}Q_{r+1} + Q_r \ge Q_{r+1} + Q_r$ and so by induction $Q_r \geq u_{r+1}$, the Fibonacci number, for $r \geq 0$. Now

$$
\begin{aligned} \varepsilon &= P_{p(d)-1} + Q_{p(d)-1} d^{1/2} \\ &> 2d^{1/2}Q_{p(d)-1} - 1 \\ &\geq 2d^{1/2}u_{p(d)} - 1 \\ &> \Big\{ \frac{1+\sqrt{5}}{2} \Big\}^{p(d)} \,, \end{aligned}
$$

and so $p(d) < A d^{1/2} \log d$ where A is approximately 5/4.

In exactly the same way, using $a_r < d^{1/2}$ for $0 \le r < p(d)$ it is possible to show that $p(d) \gg \log \varepsilon / \log d$. Since $d = 2^{2k+1}$ gives $\varepsilon =$ $(1 + \sqrt{2})^{2^k}$, we find that for arbitrarily large d it is possible for $p(d) \gg d^{1/2}$ log d, and it will be shown that this can be improved at