GENERATING O(n) WITH REFLECTIONS

MORRIS L. EATON AND MICHAEL PERLMAN

For $r \in C_n \equiv \{x | x \in \mathbb{R}^n, ||x|| = 1\}$, let $S_r = I_n - 2rr'$ where r is a column vector. O(n) denotes the orthogonal group on \mathbb{R}^n . If $R \subseteq C_n$, let $\mathscr{R} = \{S_r | r \in R\}$ and let G be the smallest closed subgroup of O(n) which contains \mathscr{R} . G is reducible if there is a nontrivial subspace $M \subseteq \mathbb{R}^n$ such that $gM \subseteq M$ for all $g \in G$. Otherwise, G is irreducible.

THEOREM. If G is infinite and irreducible, then G = O(n).

In what follows, \mathbb{R}^n denotes Euclidean *n*-space with the standard inner product, O(n) is the orthogonal group of \mathbb{R}^n , and $C_n = \{x \mid x \in \mathbb{R}^n, \|x\| = 1\}$. If U is a subset of O(n), $\langle U \rangle$ denotes the group generated algebraically by U and $\langle \overline{U} \rangle$ denotes the closure of $\langle U \rangle$. Thus, $\langle \overline{U} \rangle$ is the smallest closed subgroup of O(n) containing U. For an integer $k, 1 \leq k < n, M_k$ denotes a k-dimensional linear subspace of \mathbb{R}^n . If $r \in C_n$, let $S_r = I - 2rr'$ where r is a column vector. Thus S_r is a reflection through r-henceforth called a reflection.

Suppose $R \subseteq C_n$ and let $\mathscr{R} = \{S_r | r \in R\}$. Set $G = \langle \overline{\mathscr{R}} \rangle$. The group G is *reducible* if there is an M_k such that $gM_k \subseteq M_k$ for all $g \in G$; otherwise, G is *irreducible*. The main result of this note is the following.

THEOREM 1. If G is infinite and irreducible, then G = O(n).

Proof of Theorem 1. First note that if $S_r \in \mathscr{R}$ and $g \in G$, then $gS_rg^{-1} = S_{gr} \in G$. Let $\Delta = \{gr | g \in G, r \in R\}$. Thus, $t \in \Delta$ implies that $S_t \in G$. Since G is infinite, Δ must be infinite (see Benson and Grove (1971), Proposition 4.1.3). Since every Γ in O(n) is a product of a finite number of reflections, to show that G = O(n), it suffices to show that G is transitive on C_n (if G is transitive on C_n , then $\Delta = C_n$ so every reflection is an element of G and hence G = O(n)).

The proof that G is transitive on C_n follows. By Lemma 1 (below), there is a subgroup $K_2 \subseteq G$ and a subspace $M_2 \subseteq R^n$ such that kx = x if $x \in M_2^{\perp}$ and $k \in K_2$ and K_2 is transitive on $D_2 \equiv M_2 \cap C_n$. Since G is irreducible, there is an $r_2 \in R$ such that $r_2 \notin M_2$ and $r_2 \notin M_2^{\perp}$. Let $M_3 = \text{span} \{r_2, M_2\}$ and let $K_3 = \langle \{K_2, S_{r_2}\} \rangle > \subseteq G$. With $D_3 \equiv M_3 \cap C_n$, Lemma 3 (below) implies that kx = x for all $x \in M_3^{\perp}$ and $k \in K_3$, and K_3 is transitive on D_3 . Again, since G is irreducible, there is an $r_3 \in R$ such that $r_3 \notin M_3$ and $r_3 \notin M_3^{\perp}$. With $M_4 = \text{span} \{r_3, M_3\}$, let $K_4 = \langle \{K_3, S_{r_3}\} \rangle > \subseteq G$ and let $D_4 \equiv M_4 \cap C_n$. By Lemma 3 (below)