GENERATING $O(n)$ WITH REFLECTIONS

Morris L. Eaton and Michael Perlman

For $r \in C_{n} \equiv\left\{x \mid x \in R^{n},\|x\|=1\right\}$, let $S_{r}=I_{n}-2 r r^{\prime}$ where r is a column vector. $O(n)$ denotes the orthogonal group on R^{n}. If $R \subseteq C_{n}$, let $\mathscr{R}=\left\{S_{r} \mid r \in R\right\}$ and let G be the smallest closed subgroup of $O(n)$ which contains $\mathscr{R} . G$ is reducible if there is a nontrivial subspace $M \subseteq R^{n}$ such that $g M \subseteq M$ for all $g \in G$. Otherwise, G is irreducible.

Theorem. If G is infinite and irreducible, then $G=$ $O(n)$.

In what follows, R^{n} denotes Euclidean n-space with the standard inner product, $O(n)$ is the orthogonal group of R^{n}, and $C_{n}=\left\{x \mid x \in R^{n}\right.$, $\|x\|=1\}$. If U is a subset of $O(n),\langle U\rangle$ denotes the group generated algebraically by U and $\langle\bar{U}\rangle$ denotes the closure of $\langle U\rangle$. Thus, $\langle\bar{U}\rangle$ is the smallest closed subgroup of $O(n)$ containing U. For an integer $k, 1 \leqq k<n, M_{k}$ denotes a k-dimensional linear subspace of R^{n}. If $r \in C_{n}$, let $S_{r}=I-2 r r^{\prime}$ where r is a column vector. Thus S_{r} is a reflection through r-henceforth called a reflection.

Suppose $R \subseteq C_{n}$ and let $\mathscr{R}=\left\{S_{r} \mid r \in R\right\}$. Set $G=\langle\overline{\mathscr{R}}\rangle$. The group G is reducible if there is an M_{k} such that $g M_{k} \subseteq M_{k}$ for all $g \in G$; otherwise, G is irreducible. The main result of this note is the following.

Theorem 1. If G is infinite and irreducible, then $G=O(n)$.
Proof of Theorem 1. First note that if $S_{r} \in \mathscr{R}$ and $g \in G$, then $g S_{r} g^{-1}=S_{g r} \in G$. Let $\Delta=\{g r \mid g \in G, r \in R\}$. Thus, $t \in \Delta$ implies that $S_{t} \in G$. Since G is infinite, Δ must be infinite (see Benson and Grove (1971), Proposition 4.1.3). Since every Γ in $O(n)$ is a product of a finite number of reflections, to show that $G=O(n)$, it suffices to show that G is transitive on C_{n} (if G is transitive on C_{n}, then $\Delta=C_{n}$ so every reflection is an element of G and hence $G=O(n)$).

The proof that G is transitive on C_{n} follows. By Lemma 1 (below), there is a subgroup $K_{2} \subseteq G$ and a subspace $M_{2} \subseteq R^{n}$ such that $k x=x$ if $x \in M_{2}^{\perp}$ and $k \in K_{2}$ and K_{2} is transitive on $D_{2} \equiv M_{2} \cap C_{n}$. Since G is irreducible, there is an $r_{2} \in R$ such that $r_{2} \notin M_{2}$ and $r_{2} \notin M_{2}^{\perp}$. Let $M_{3}=\operatorname{span}\left\{r_{2}, M_{2}\right\}$ and let $K_{3}=\left\langle\left\{K_{2}, S_{r_{2}}\right\}\right\rangle>\subseteq G$. With $D_{3} \equiv M_{3} \cap C_{n}$, Lemma 3 (below) implies that $k x=x$ for all $x \in M_{3}^{\perp}$ and $k \in K_{3}$, and K_{3} is transitive on D_{3}. Again, since G is irreducible, there is an $r_{3} \in R$ such that $r_{3} \notin M_{3}$ and $r_{3} \notin M_{3}^{\perp}$. With $M_{4}=\operatorname{span}\left\{r_{3}, M_{3}\right\}$, let $K_{4}=\left\langle\left\{K_{3}, S_{r_{3}}\right\}\right\rangle>\cong G$ and let $D_{4} \equiv M_{4} \cap C_{n}$. By Lemma 3 (below)

