THE BOUNDEDNESS OF THE CANTOR-BENDIXSON ORDER OF SOME ANALYTIC SETS

R. DANIEL MAULDIN

Let X and Y be complete separable metric spaces (Polish spaces). If E is a subset of $X \times Y$, and $x \in X$, then by the x-section of E, E_x , is meant $E \cap (\{x\} \times Y)$. By $P_s(E)$ is

 $P_s(E) = \{x: E_x \text{ is scattered}\}$.

In this paper the following uniform boundedness principle for the Cantor-Bendixson order of analytic sets will be demonstrated.

THEOREM L. Let W be an analytic subset of $X \times Y$ and let M be an analytic subset of X such that $M \subset P_s(W)$. Then there is a countable ordinal α such that the α th Cantor-Bendixson derived set of E_x is empty, for each x in M.

Let us recall that if A is a subset of X, then the Cantor-Bendixson derivatives of A may be defined by transfinite induction as follows:

$$A^{\scriptscriptstyle(0)}=A$$

 $A^{(\alpha)} = \bigcap_{\beta < \alpha} \{x : x \text{ is an acculumation point of } A^{(\beta)} \text{ and } x \in A\}.$

Recall that a subset, H, of a Polish space is scattered if, and only if H is a countable G_{δ} set, or equivalently, there is a countable ordinal γ such that the γ th Cantor-Bendixson derived set, $H^{(\gamma)}$, of H is empty [5]. By the Cantor-Bendixson order of a subset H of a topological space is meant the first ordinal γ such that $H^{(\gamma)} = H^{(\gamma+1)}$. The Cantor-Bendixson order of every subset of a Polish space is necessarily less than ω_1 [5].

If $E \subset X \times Y$ and $M \subset X$, then E will be bounded on M provided there is an ordinal γ , $\gamma < \omega_1$, such that for each x in M, the Cantor-Bendixson order of E_x is $\leq \gamma$; otherwise E will be said to be unbounded on M.

Let us note that in order to prove Theorem L it suffices to show that if E is an analytic subset of $X \times Y$ such that each x-section of E is scattered then E is bounded on the X projection of E, $\pi_X(E)$.

Theorem L has the following corollary:

COROLLARY 1. Let X be an uncountable Polish space. Let $\mathscr E$ be any class of countable G_{δ} subsets of X which contains all the countable compact subsets of X except possibly countably many. Then no analytic set in X^2 can be universal for $\mathscr E$.