EXTREMAL PROPERTIES OF REAL BIAXIALLY SYMMETRIC POTENTIALS IN $E^{2(\alpha+\beta+2)}$

Peter A. McCoy

The set *G* consists of all real biaxially symmetric potentials $U^{(\alpha,\beta)}(x,y) = \sum_{n=0}^{\infty} a_n (x^2 + y^2)^n P_n^{(\alpha,\beta)}(x^2 - y^2/x^2 + y^2) / P_n^{(\alpha,\beta)}(1)$, $\alpha > \beta > -1/2$ which are regular in the open unit sphere Σ about the origin in $E^{2(\alpha+\beta+2)}$. Three problems appear regarding \mathscr{B} and subset \mathscr{B}_* whose members have the first m+1 coefficients a_0, \dots, a_m specified. (1) For $U^{(\alpha,\beta)} \in \mathscr{B}$, determine $I(U^{(\alpha,\beta)}) = \inf \{ U^{(\alpha,\beta)}(x,y) | (x,y) \in \Sigma \}$ as limit of a monotone sequence of constants $\{\lambda_{2n}(a_0, \dots, a_n)\}_{n=0}^{\infty}$ which can be computed algebraically. (2) Find $U_0^{(\alpha,\beta)} \in \mathscr{B}_*$ and the constant $\lambda_{2m}(\alpha_0, \cdots, \alpha_m) = \sup \{I(U^{(\alpha,\beta)}) | U^{(\alpha,\beta)} \in \mathscr{B}_*\} = I(U_0^{(\alpha,\beta)}).$ (3) Determine necessary and sufficient conditions from the Fourier coefficients so that $U^{(\alpha,\beta)} \in \mathscr{B}$ and $U^{(\alpha,\beta)}$ is nonnegative in Σ . We develop solutions using operators based on Koornwinder's Laplace type integral for Jacobi polynomials, along with applications of the methods of ascent and descent to the Caratheodory-Fejer and Caratheodory-Toeplitz problems which focus on the properties of harmonic functions in E^2 .

1. Introduction. Real biaxially symmetric potentials (BASP) $U^{(\alpha,\beta)}$ which are regular in some domain Ω about the origin in $E^{2(\alpha+\beta+2)}$ may be expanded uniquely as a series

$$(1)$$
 $U^{(lpha,eta)}(x,y)=a_{\scriptscriptstyle 0}+2\sum\limits_{n=1}^{\infty}a_nU^{(lpha,eta)}_n(x,y)$, $\ lpha,eta>-1/2$

in terms of the complete set of biaxially symmetric harmonic polynomials

$$(\,2\,) \qquad U_{n}^{(lpha,eta)}(x,\,y) = (x^2+\,y^2)^n {P}_{n}^{(lpha,eta)}(x^2-\,y^2/x^2+\,y^2)/{P}_{n}^{(lpha,eta)}(1)$$
 ,

defined from the Jacobi polynomials [1, p. 9]. These functions are necessarily even, satisfying the Cauchy data

$$(3) U_x^{(\alpha,\beta)}(0, y) = U_y^{(\alpha,\beta)}(x, 0) = 0$$

along the singular lines x = 0, y = 0 in Ω .

Symmetry about one axis reduces $U_n^{(\alpha,\beta)}$ to zonal harmonics $(\alpha=\beta)$, identifying $U^{(\alpha,\beta)}$ as a generalized axially symmetric potential (GASP) [1, p. 10; 5, p. 167] which corresponds to the real part of an analytic function of one complex variable when $\alpha = \beta = -1/2$. This simple correspondence provides characterizations of the fundamental properties of harmonic functions in E^2 from their Fourier coefficients in circular harmonics as they are determined by those of the as-