ON COVERINGS OF EUCLIDEAN SPACE BY CONVEX SETS

G. D. Chakerian and H. Groemer

Abstract

Let $\mathscr{K}=\left\{K_{1}, K_{2}, \cdots\right\}$ be an infinite countable class of compact convex subsets of euclidean n-dimensional space R^{n}. We shall say that \mathscr{K} permits a space covering or, more precisely, a covering of R^{n}, if there are rigid motions $\sigma_{1}, \sigma_{2}, \cdots$ such that $R^{n} \subset \bigcup_{i=1}^{\infty} \sigma_{i} K_{i}$. In this paper we concern ourselves with necessary and sufficient conditions in order that a given class \mathscr{K} permits a space covering.

If the set of diameters $\left\{d\left(K_{i}\right): K_{i} \in K\right\}$ is bounded, the problem has already been solved in [3] by showing that in this case \mathscr{K} permits a covering of R^{n} if and only if the series $\sum_{i=1}^{\infty} v\left(K_{i}\right)$ of volumes $v\left(K_{i}\right)$ diverges. (The same result holds obviously without any restrictions on the diameters if $n=1$.) On the other hand, if $\left\{d\left(K_{i}\right)\right\}$ is unbounded and $n>1$, it is not difficult to see (cf. [1] and [2]) that the divergence of this series is no longer sufficient but only necessary. Only in the special case $n=2$ are some necessary and sufficient conditions known [2].

Our principal results are stated in the following §2. Theorem 1 gives an inductive criterion that enables one to decide whether a given \mathscr{K} permits a space covering. Theorems 2 and 3 serve the same purpose but are of a more explicit nature, involving the divergence of infinite series of geometric invariants associated with the members of \mathscr{K}. Other results, regarding coverings by balls, boxes (i.e. isometric images of n dimensional intervals), and 2-dimensional sets, are stated and discussed in the same section. This is followed by the proofs of three lemmas in §3. Lemma 1 appears to be of some independent interest. §4 contains the proofs of our theorems.
2. Theorems and corollaries. A nonempty compact convex set will be called a convex body. If K is a convex body in R^{n}, and if p, q are two points of K such that the length of the segment $[p, q]$ is equal to the diameter $d(K)$, then we call the orthogonal projection of K onto a hyperplane perpendicular to $[p, q]$ a normal projection of K. Of course, a normal projection of K is not uniquely determined by K. However, if $\left\{K_{i}\right\}$ is given we shall always assume that for each K_{i} a definite normal projection $N\left(K_{i}\right)$ has been selected and is kept fixed. Since each $N\left(K_{i}\right)$ is at most $(n-1)$-dimensional it is clear (using a self-explanatory extension of our original definition) what is meant by saying that the class

