THE SHEAF OF OUTER FUNCTIONS IN THE POLYDISC

SERGIO E. ZARANTONELLO

Let U^n be the unit polydisc in C^n . Define a presheaf by assigning to each relatively open subset W of \overline{U}^n the multiplicative group of outer functions in the intersection $W \cap U^n$. If \mathscr{C} denotes the associated sheaf, we prove that $H^q(\overline{U}^n, \mathscr{C}) = 0$ for all integers $q \ge 1$.

1. Introduction. Classically, the outer functions in the open unit disc U are functions of the form

$$\lambda \exp \int_{x} rac{w+z}{w-z} k(w) dm(w)$$
 ,

where m is the Haar measure on the unit circle T, k is an absolutely integrable real-valued function on T, and λ is a complex number of modulus one. Closely related to the class of outer functions is the Smirnov class $N^*(U)$, which consists of all functions that are holomorphic in U and admit an inner-outer factorization. The class $N^*(U)$ is an algebra, and the outer functions are precisely the invertible elements of this algebra. An alternative characterization of $N^*(U)$, considered by Rudin in [5], where it was extended to the polydisc U^n , is that a holomorphic function f in U belongs to $N^*(U)$ if and only if there exists a strongly convex function ϕ (depending on f) for which $\phi(\operatorname{Log}^+|f|)$ has a harmonic majorant. This definition can be extended naturally to arbitrary polydomains $W_1 \times W_2 \times \cdots \times W_n$, the requirement now being that $\phi(\operatorname{Log}^+|f|)$ have an *n*-harmonic majorant in $W_1 \times W_2 \times \cdots \times W_n$. We define the outer functions in $W_1 imes W_2 imes \cdots imes W_n$ to be the invertible elements of the algebra $N^*(W_1 \times W_2 \times \cdots \times W_n)$. (For the polydisc U^n , this definition can easily be seen to agree with the one given by Rudin in [5, Def. 4.4.3, p. 72].)

The correspondence that assigns to each polydomain W in \mathbb{C}^n the group $O(W \cap U^n)$ of outer functions in the intersection $W \cap U^n$, defines a sheaf \mathscr{Q} on the closure \overline{U}^n of U^n , which is locally determined in the sense that $\Gamma(\overline{U}^n, \mathscr{Q})$ is canonically isomorphic to the group of outer functions in U^n . Our aim, in this article, is to show that the cohomology groups $H^q(\overline{U}^n, \mathscr{Q})$ are trivial for all integers $q \geq 1$.

Sheaves of a similar type (sheaves of germs of holomorphic functions satisfying boundary conditions on polydomains) have been studied by Nagel in [4], where a unified approach to many types of