ON ARC LENGTH SHARPENINGS

WILLIAM A. ETTLING

This paper introduces two new sharpenings:

THEOREM. Let A denote a rectifiable arc (with length l(A)) of a metric space, let P denote a finite, normally-ordered subset of A, and let $l(T^*(P))$ denote the linear content of a mini-tree $T^*(P)$ spanning P. Then $l.u.b._{P \subset A} l(T^*(P)) = l(A)$.

DEFINITION. If E is a nonempty subset of a set P that is spanned by tree T, then T is said to be on E.

THEOREM. Let $\sigma(E)$ denote the greatest lower bound of the linear contents of all trees on E. If A denotes a rectifiable arc of a finitely compact metric space, then $l.u.b._{E \subset A} \sigma(E) = l(A)$, where E denotes any finite normallyordered subset of A.

On arc length sharpenings.¹ It is convenient to call an unordered pair of distinct points p, q of a metric space M a segment, denoted by $\{p, q\}$. Each of the points p, q of the segment $\{p, q\}$ is an *endpoint* of the segment, and the *length* of $\{p, q\}$ is the distance pq of its endpoints.

A nonempty set S of distinct segments forms a *chain* C provided the end points of the segments may be labelled a_0, a_1, \dots, a_k (with all the a_i 's representing pairwise distinct elements of M) so that the elements of S are $\{a_0, a_1\}, \{a_1, a_2\}, \dots, \{a_{k-1}, a_k\}$. The chain is said to join a_0 and a_k ; the points a_0, a_1, \dots, a_k are the vertices of the chain.

A nonempty set S of segments forms a *tree* T provided each two distinct points of the set of endpoints of the segments are joined by exactly one chain of its segments. The *vertices* of T are the endpoints of its segments. The segments of a tree are called *branches*, and the *linear content* of a tree is the sum of the lengths of its branches. If a tree T has set E as its vertex set, then T is said to *span* E. If E is a nonempty subset of a set P, and tree Tspans P, then T is said to be on E.

A finite subset E (containing at least two points) of M is spanned by only a finite number of trees. Let L(E) denote the minimum of the linear contents of the trees that span E and let $T^*(E)$ symbolize any tree spanning E whose linear content $l(T^*(E))$ equals L(E). $T^*(E)$ is referred to as a mini-tree spanning E.

Denote by $\sigma(E)$ the greatest lower bound of linear contents of all trees that span P where $P \supset E$ (P is a finite subset of M); that

¹ From research for University of Missouri Dissertation (1973).