ON ARC LENGTH SHARPENINGS

William A. Ettling

This paper introduces two new sharpenings:

Theorem. Let A denote a rectifiable arc (with length $l(A)$) of a metric space, let P denote a finite, normally-ordered subset of A, and let $l\left(T^{*}(P)\right)$ denote the linear content of a mini-tree $T^{*}(P)$ spanning P. Then l.u.b. ${ }_{P \subset A} l\left(T^{*}(P)\right)=l(A)$.

Definition. If E is a nonempty subset of a set P that is spanned by tree T, then T is said to be on E.

Theorem. Let $\sigma(E)$ denote the greatest lower bound of the linear contents of all trees on E. If A denotes a rectifiable arc of a finitely compact metric space, then l.u.b. ${ }_{E \subset A} \sigma(E)=l(A)$, where E denotes any finite normallyordered subset of A.

On arc length sharpenings. ${ }^{1}$ It is convenient to call an unordered pair of distinct points p, q of a metric space M a segment, denoted by $\{p, q\}$. Each of the points p, q of the segment $\{p, q\}$ is an endpoint of the segment, and the length of $\{p, q\}$ is the distance $p q$ of its endpoints.

A nonempty set S of distinct segments forms a chain C provided the end points of the segments may be labelled $a_{0}, a_{1}, \cdots, a_{k}$ (with all the a_{i} 's representing pairwise distinct elements of M) so that the elements of S are $\left\{a_{0}, a_{1}\right\},\left\{a_{1}, a_{2}\right\}, \cdots,\left\{a_{k-1}, a_{k}\right\}$. The chain is said to join a_{0} and a_{k}; the points $a_{0}, a_{1}, \cdots, a_{k}$ are the vertices of the chain.

A nonempty set S of segments forms a tree T provided each two distinct points of the set of endpoints of the segments are joined by exactly one chain of its segments. The vertices of T are the endpoints of its segments. The segments of a tree are called branches, and the linear content of a tree is the sum of the lengths of its branches. If a tree T has set E as its vertex set, then T is said to $\operatorname{span} E$. If E is a nonempty subset of a set P, and tree T spans P, then T is said to be on E.

A finite subset E (containing at least two points) of M is spanned by only a finite number of trees. Let $L(E)$ denote the minimum of the linear contents of the trees that span E and let $T^{*}(E)$ symbolize any tree spanning E whose linear content $l\left(T^{*}(E)\right.$) equals $L(E)$. $T^{*}(E)$ is referred to as a mini-tree spanning E.

Denote by $\sigma(E)$ the greatest lower bound of linear contents of all trees that span P where $P \supset E$ (P is a finite subset of M); that

[^0]
[^0]: ${ }^{1}$ From research for University of Missouri Dissertation (1973).

