A NEW FAMILY OF PARTITION IDENTITIES

D. M. BRESSOUD

The partition function A(n; k) is the number of partitions of n with minimal difference k. Our principal result is that for all $k \ge 1$, $A(n; k) \equiv B(n; k)$, where B(n; k) is the number of partitions of n into distinct parts such that for $1 \le i \le k$, the smallest part $\equiv i \pmod{k}$ is $>k \sum_{j=1}^{i-1} r(j)$, where r(j) is the number of parts $\equiv j \pmod{k}$. This arises as a corollary to a more general result.

The particular case A(n; 2) = B(n; 2) was recently proved by Andrews and Askey [1]. It is known from the Rogers-Ramanujan identities (e.g., Harby and Wright [2], p. 291) that A(n; 2) is equal to the number of partition of n into parts $\equiv \pm 1 \pmod{5}$. Andrews and Askey discovered a q-series identity due to Rogers which has the partition theoretic interpretation: B(n; 2) is equal to the number of partitions of n into parts $\equiv \pm 1 \pmod{5}$.

The general identity. Given $k \ge 1$, let $q(1), q(2), \dots, q(k)$ be any complete residue system mod k. We define the following partition functions:

 $A(n; k; q(1), \dots, q(k); r(1), \dots, r(k)) =$ number of partitions of n with minimal difference k and such that for $1 \leq i \leq k$, there are r(i) parts $\equiv q(i) \pmod{k}$.

 $B(n; k; q(1), \dots, q(k); r(1), \dots, r(k)) =$ number of partitions of n into distinct parts such that for $1 \leq i \leq k$, there are r(i) parts $\equiv q(i) \pmod{k}$, and the smallest part $\equiv q(i) \pmod{k}$ is $>k \sum_{j=1}^{i-1} r(j)$.

 $C(n; k; q(1), \dots, q(k); r(1), \dots, r(k)) =$ number of partitions of n such that for $1 \leq i \leq k$, there are r(i) parts $\equiv q(i) \pmod{k}$.

Given $r(1), \dots, r(k)$, we set $S = \sum_{i=1}^{k} r(i)$ = number of parts in the partition.

LEMMA 1.

$$egin{aligned} A(n;\,k;\,q(1),\,\cdots,\,q(k);\,r(1),\,\cdots,\,r(k))\ &=C(n\,-\,kS(S\,-\,1)/2;\,k;\,q(1),\,\cdots,\,q(k);\,r(1),\,\cdots,\,r(k)) \ . \end{aligned}$$

Proof. Given a partition of n with minimal difference k and r(i) parts $\equiv q(i) \pmod{k}$, subtract k from the second smallest part, 2k from the third smallest part, and, in general k(j-1) from the *j*th smallest part. This gives us a partition of n - kS(S-1)/2 with r(i) parts $\equiv q(i) \pmod{k}$ for all $i, 1 \leq i \leq k$.