A NEW FAMILY OF PARTITION IDENTITIES

D. M. Bressoud

Abstract

The partition function $A(n ; k)$ is the number of partitions of n with minimal difference k. Our principal result is that for all $k \geqq 1, A(n ; k) \equiv B(n ; k)$, where $B(n ; k)$ is the number of partitions of n into distinct parts such that for $1 \leqq i \leqq k$, the smallest part $\equiv i(\bmod k)$ is $>k \sum_{j=1}^{i-1} r(j)$, where $r(j)$ is the number of parts $\equiv j(\bmod k)$. This arises as a corollary to a more general result.

The particular case $A(n ; 2)=B(n ; 2)$ was recently proved by Andrews and Askey [1]. It is known from the Rogers-Ramanujan identities (e.g., Harby and Wright [2], p. 291) that $A(n ; 2)$ is equal to the number of partition of n into parts $\equiv \pm 1(\bmod 5)$. Andrews and Askey discovered a q-series identity due to Rogers which has the partition theoretic interpretation: $B(n ; 2)$ is equal to the number of partitions of n into parts $\equiv \pm 1(\bmod 5)$.

The general identity. Given $k \geqq 1$, let $q(1), q(2), \cdots, q(k)$ be any complete residue system $\bmod k$. We define the following partition functions:
$A(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))=$ number of partitions of n with minimal difference k and such that for $1 \leqq i \leqq k$, there are $r(i)$ parts $\equiv q(i)(\bmod k)$.
$B(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))=$ number of partitions of n into distinct parts such that for $1 \leqq i \leqq k$, there are $r(i)$ parts \equiv $q(i)(\bmod k)$, and the smallest part $\equiv q(i)(\bmod k)$ is $>k \sum_{j=1}^{i-1} r(j)$.
$C(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))=$ number of partitions of n such that for $1 \leqq i \leqq k$, there are $r(i)$ parts $\equiv q(i)(\bmod k)$.

Given $r(1), \cdots, r(k)$, we set $S=\sum_{i=1}^{k} r(i)=$ number of parts in the partition.

Lemma 1.

$$
\begin{aligned}
& A(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k)) \\
& \quad=C(n-k S(S-1) / 2 ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))
\end{aligned}
$$

Proof. Given a partition of n with minimal difference k and $r(i)$ parts $\equiv q(i)(\bmod k)$, subtract k from the second smallest part, $2 k$ from the third smallest part, and, in general $k(j-1)$ from the j th smallest part. This gives us a partition of $n-k S(S-1) / 2$ with $r(i)$ parts $\equiv q(i)(\bmod k)$ for all $i, 1 \leqq i \leqq k$.

